Tailoring Hydrogen Adsorption and Desorption Properties of Li doped SV Monolayer h-BN Systems using Ab-Initio Calculations

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Kaneez Fatima, M. Rafique, A. M. Soomro, Mahesh Kumar
{"title":"Tailoring Hydrogen Adsorption and Desorption Properties of Li doped SV Monolayer h-BN Systems using Ab-Initio Calculations","authors":"Kaneez Fatima, M. Rafique, A. M. Soomro, Mahesh Kumar","doi":"10.1139/cjp-2023-0072","DOIUrl":null,"url":null,"abstract":"This study uses DFT (Density Functional Theory) technique to examine the H2 storage on Li-decorated h-BN monolayer. The results of DFT proven that Li doped h-BN system can hold up to 9H2 with the adsorption energy lie in between -0.31eV to -0.24eV/H2 at ambient condition However, the calculated average adsorption energy for 9H2 is-0.240eV/H2 with hydrogen storage capacity of 5.96 wt. %, which is according to the United States Department of Energy (USDOE). Partial Density of State (PDOS) computed for each configuration to provide additional justifications for the H2 storage on Li-doped h-BN monolayer. The hybridization shows a significant interaction between hydrogen molecules (H2) and Li atom, and most of their hybrid peaks was observed in the energy range from -7.5 eV to -1 eV. Moreover, the H2 desorption simulations achieved via the ab initio molecular dynamics (MD). The computed desorption temperature TD is 306 °K which is a suitable operating temperature. Hence our research demonstrates that Li-doped h-BN is a thermally stable and viable hydrogen storage material for hydrogen storage systems.","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":"61 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0072","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This study uses DFT (Density Functional Theory) technique to examine the H2 storage on Li-decorated h-BN monolayer. The results of DFT proven that Li doped h-BN system can hold up to 9H2 with the adsorption energy lie in between -0.31eV to -0.24eV/H2 at ambient condition However, the calculated average adsorption energy for 9H2 is-0.240eV/H2 with hydrogen storage capacity of 5.96 wt. %, which is according to the United States Department of Energy (USDOE). Partial Density of State (PDOS) computed for each configuration to provide additional justifications for the H2 storage on Li-doped h-BN monolayer. The hybridization shows a significant interaction between hydrogen molecules (H2) and Li atom, and most of their hybrid peaks was observed in the energy range from -7.5 eV to -1 eV. Moreover, the H2 desorption simulations achieved via the ab initio molecular dynamics (MD). The computed desorption temperature TD is 306 °K which is a suitable operating temperature. Hence our research demonstrates that Li-doped h-BN is a thermally stable and viable hydrogen storage material for hydrogen storage systems.
利用Ab-Initio计算剪裁Li掺杂SV单层h-BN体系的氢吸附和解吸性能
本研究采用密度泛函理论(DFT)技术研究了锂修饰的氢氮化硼单层上的氢存储。DFT结果证明,Li掺杂h-BN体系在环境条件下可吸附9H2,吸附能在-0.31eV ~ -0.24eV/H2之间,而根据美国能源部(USDOE)的计算,9H2的平均吸附能为0.240 ev /H2,储氢容量为5.96 wt. %。计算了每种构型的偏态密度(PDOS),为掺杂锂的h-BN单层上的H2存储提供了额外的理由。结果表明,氢分子(H2)与Li原子之间存在明显的相互作用,其杂化峰主要分布在-7.5 eV ~ -1 eV的能量范围内。此外,通过从头算分子动力学(MD)模拟了H2的解吸过程。计算的解吸温度TD为306°K,是一个合适的操作温度。因此,我们的研究表明,锂掺杂的h-BN是一种热稳定的、可行的储氢材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Physics
Canadian Journal of Physics 物理-物理:综合
CiteScore
2.30
自引率
8.30%
发文量
65
审稿时长
1.7 months
期刊介绍: The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信