Effect of Mn substitution on acetone and ammonia sensing in CoFe2O4 nanoparticles

S. Sarkar, M. Bhatnagar
{"title":"Effect of Mn substitution on acetone and ammonia sensing in CoFe2O4 nanoparticles","authors":"S. Sarkar, M. Bhatnagar","doi":"10.1109/ISPTS.2015.7220123","DOIUrl":null,"url":null,"abstract":"Mn has substituted part of Fe in cobalt ferrite (CoFe2O4) and resultant material has been abbreviated as CFMO (CoFe1.7Mn0.3O4). Chemical co-precipitation route has been followed for synthesis. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), I-V measurement were performed for sample characterization. The influence of Mn substitution was seen in lowering the operating temperature for both acetone and ammonia gas sensing with high response as well as very fast response and recovery timealong with temperature dependent selectivity.","PeriodicalId":6520,"journal":{"name":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","volume":"75 1","pages":"253-256"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2015.7220123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mn has substituted part of Fe in cobalt ferrite (CoFe2O4) and resultant material has been abbreviated as CFMO (CoFe1.7Mn0.3O4). Chemical co-precipitation route has been followed for synthesis. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), I-V measurement were performed for sample characterization. The influence of Mn substitution was seen in lowering the operating temperature for both acetone and ammonia gas sensing with high response as well as very fast response and recovery timealong with temperature dependent selectivity.
锰取代对CoFe2O4纳米颗粒中丙酮和氨传感的影响
在钴铁氧体(CoFe2O4)中,Mn取代了部分Fe,生成的材料简称为CFMO (CoFe1.7Mn0.3O4)。采用化学共沉淀法合成。采用x射线衍射(XRD)、扫描电镜(SEM)、能量色散x射线能谱(EDX)、I-V测量等方法对样品进行表征。Mn取代对丙酮气敏和氨气敏的影响是降低操作温度,具有高响应、快速响应和恢复时间以及温度依赖的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信