Gravitational spin-orbit and aligned spin1−spin2 couplings through third-subleading post-Newtonian orders

Andrea Antonelli, C. Kavanagh, Mohammed M. Khalil, J. Steinhoff, J. Vines
{"title":"Gravitational spin-orbit and aligned \nspin1−spin2\n couplings through third-subleading post-Newtonian orders","authors":"Andrea Antonelli, C. Kavanagh, Mohammed M. Khalil, J. Steinhoff, J. Vines","doi":"10.1103/physrevd.102.124024","DOIUrl":null,"url":null,"abstract":"The study of scattering encounters continues to provide new insights into the general relativistic two-body problem. The local-in-time conservative dynamics of an aligned-spin binary, for both unbound and bound orbits, is fully encoded in the gauge-invariant scattering-angle function, which is most naturally expressed in a post-Minkowskian (PM) expansion, and which exhibits a remarkably simple dependence on the masses of the two bodies (in terms of appropriate geometric variables). This dependence links the PM and small-mass-ratio approximations, allowing gravitational self-force results to determine new post-Newtonian (PN) information to all orders in the mass ratio. In this paper, we exploit this interplay between relativistic scattering and self-force theory to obtain the third-subleading (4.5PN) spin-orbit dynamics for generic spins, and the third-subleading (5PN) spin$_1$-spin$_2$ dynamics for aligned spins. We further implement these novel PN results in an effective-one-body framework, and demonstrate the improvement in accuracy by comparing against numerical-relativity simulations.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.124024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The study of scattering encounters continues to provide new insights into the general relativistic two-body problem. The local-in-time conservative dynamics of an aligned-spin binary, for both unbound and bound orbits, is fully encoded in the gauge-invariant scattering-angle function, which is most naturally expressed in a post-Minkowskian (PM) expansion, and which exhibits a remarkably simple dependence on the masses of the two bodies (in terms of appropriate geometric variables). This dependence links the PM and small-mass-ratio approximations, allowing gravitational self-force results to determine new post-Newtonian (PN) information to all orders in the mass ratio. In this paper, we exploit this interplay between relativistic scattering and self-force theory to obtain the third-subleading (4.5PN) spin-orbit dynamics for generic spins, and the third-subleading (5PN) spin$_1$-spin$_2$ dynamics for aligned spins. We further implement these novel PN results in an effective-one-body framework, and demonstrate the improvement in accuracy by comparing against numerical-relativity simulations.
引力在手性和一致spin1−spin2耦合通过third-subleading后牛顿订单
对散射相遇的研究继续为广义相对论的二体问题提供新的见解。对于非束缚轨道和束缚轨道,对准自旋双星的局域时保守动力学完全编码在规范不变散射角函数中,该函数最自然地用后闵可夫斯基(PM)展开表示,并且表现出对两个物体质量的非常简单的依赖(根据适当的几何变量)。这种依赖关系将PM和小质量比近似联系起来,允许引力自作用力结果确定质量比中所有阶的新后牛顿(PN)信息。本文利用相对论散射和自力理论之间的相互作用,得到了一般自旋的第三次先导(4.5PN)自旋轨道动力学,以及排列自旋的第三次先导(5PN)自旋$_1 -自旋$_2动力学。我们进一步在一个有效的单体框架中实现了这些新的PN结果,并通过与数值相对论模拟的比较证明了精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信