On the Error of Naive Rare-Event Monte Carlo Estimator

Yuanlu Bai, H. Lam
{"title":"On the Error of Naive Rare-Event Monte Carlo Estimator","authors":"Yuanlu Bai, H. Lam","doi":"10.1109/WSC48552.2020.9383905","DOIUrl":null,"url":null,"abstract":"We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo. Unlike using variance reduction techniques, this naive estimator does not have a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges, which motivate one to look at naive estimators. In this paper we investigate this naive rare-event estimator, particularly its conservativeness level and the guarantees in using it to construct confidence bounds for the target probability. We show that the half-width of a valid confidence interval is typically scaled proportional to the magnitude of the target probability and inverse square-root with the number of positive outcomes in the Monte Carlo. We also derive and compare several valid confidence bounds constructed from various techniques.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"147 1","pages":"397-408"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9383905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the estimation of rare-event probabilities using sample proportions output by naive Monte Carlo. Unlike using variance reduction techniques, this naive estimator does not have a priori relative efficiency guarantee. On the other hand, due to the recent surge of sophisticated rare-event problems arising in safety evaluations of intelligent systems, efficiency-guaranteed variance reduction may face implementation challenges, which motivate one to look at naive estimators. In this paper we investigate this naive rare-event estimator, particularly its conservativeness level and the guarantees in using it to construct confidence bounds for the target probability. We show that the half-width of a valid confidence interval is typically scaled proportional to the magnitude of the target probability and inverse square-root with the number of positive outcomes in the Monte Carlo. We also derive and compare several valid confidence bounds constructed from various techniques.
朴素稀有事件蒙特卡罗估计误差的研究
我们考虑用朴素蒙特卡罗输出的样本比例估计罕见事件概率。与使用方差缩减技术不同,这种朴素估计器没有先验的相对效率保证。另一方面,由于最近智能系统安全评估中出现的复杂罕见事件问题激增,保证效率的方差减少可能面临实现挑战,这促使人们关注朴素估计器。本文研究了这种朴素的稀有事件估计量,特别是它的保守性水平和用它来构造目标概率置信界的保证。我们表明,有效置信区间的半宽度通常与目标概率的大小成比例,并与蒙特卡罗中正结果的数量成反比。我们还推导并比较了几种由不同技术构造的有效置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信