{"title":"Excitation of Shear Layer Due to Surface Roughness Near the Leading Edge: An Experiment","authors":"P. Singh, S. Sarkar","doi":"10.1115/1.4049685","DOIUrl":null,"url":null,"abstract":"\n In this paper, a comprehensive study has been performed to address the excitation of a separated boundary layer near the leading edge due to surface roughness. Experiments are performed on a model airfoil with the semicircular leading edge at a Reynolds number (Rec) of 1.6×105, where the freestream turbulence (fst) is 1.2%. The flow features are investigated over the three rough surfaces with the roughness characteristic in the wall unit of 17, 10.5, and 8.4, which are estimated from the velocity profile at a location far downstream of reattachment. The wall roughness results in an early transition and reattachment, leading to a reduction of the laminar shear layer length apart from the bubble length. It is worthwhile to note that although the large-amplitude pretransitional perturbations are apparent from the beginning for the rough surface, the shear layer reflects the amplification of selected frequencies, where the fundamental frequency when normalized is almost the same as that of the smooth wall. The universal intermittency curve can be used to describe the transition of the shear layer, which exhibits some resemblance to the excitation of the boundary layer under fst, signifying the viscous effect.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"303 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4049685","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, a comprehensive study has been performed to address the excitation of a separated boundary layer near the leading edge due to surface roughness. Experiments are performed on a model airfoil with the semicircular leading edge at a Reynolds number (Rec) of 1.6×105, where the freestream turbulence (fst) is 1.2%. The flow features are investigated over the three rough surfaces with the roughness characteristic in the wall unit of 17, 10.5, and 8.4, which are estimated from the velocity profile at a location far downstream of reattachment. The wall roughness results in an early transition and reattachment, leading to a reduction of the laminar shear layer length apart from the bubble length. It is worthwhile to note that although the large-amplitude pretransitional perturbations are apparent from the beginning for the rough surface, the shear layer reflects the amplification of selected frequencies, where the fundamental frequency when normalized is almost the same as that of the smooth wall. The universal intermittency curve can be used to describe the transition of the shear layer, which exhibits some resemblance to the excitation of the boundary layer under fst, signifying the viscous effect.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes