A curiosity About (−1)[e] +(−1)[2e] + ··· +(−1)[Ne]

F. Amoroso, M. Omarjee
{"title":"A curiosity About (−1)[e] +(−1)[2e] + ··· +(−1)[Ne]","authors":"F. Amoroso, M. Omarjee","doi":"10.2478/udt-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract Let α be an irrational real number; the behaviour of the sum SN (α):= (−1)[α] +(−1)[2α] + ··· +(−1)[Nα] depends on the continued fraction expansion of α/2. Since the continued fraction expansion of 2/2 \\sqrt 2 /2 has bounded partial quotients, SN(2)=O(log(N)) {S_N}\\left( {\\sqrt 2 } \\right) = O\\left( {\\log \\left( N \\right)} \\right) and this bound is best possible. The partial quotients of the continued fraction expansion of e grow slowly and thus SN(2e)=O(log(N)2log log(N)2) {S_N}\\left( {2e} \\right) = O\\left( {{{\\log {{\\left( N \\right)}^2}} \\over {\\log \\,\\log {{\\left( N \\right)}^2}}}} \\right) , again best possible. The partial quotients of the continued fraction expansion of e/2 behave similarly as those of e. Surprisingly enough SN(e)=O(log(N)log log(N)) 1188 .","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"70 1","pages":"1 - 8"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let α be an irrational real number; the behaviour of the sum SN (α):= (−1)[α] +(−1)[2α] + ··· +(−1)[Nα] depends on the continued fraction expansion of α/2. Since the continued fraction expansion of 2/2 \sqrt 2 /2 has bounded partial quotients, SN(2)=O(log(N)) {S_N}\left( {\sqrt 2 } \right) = O\left( {\log \left( N \right)} \right) and this bound is best possible. The partial quotients of the continued fraction expansion of e grow slowly and thus SN(2e)=O(log(N)2log log(N)2) {S_N}\left( {2e} \right) = O\left( {{{\log {{\left( N \right)}^2}} \over {\log \,\log {{\left( N \right)}^2}}}} \right) , again best possible. The partial quotients of the continued fraction expansion of e/2 behave similarly as those of e. Surprisingly enough SN(e)=O(log(N)log log(N)) 1188 .
设α为无理数;SN (α):=(−1)[α] +(−1)[2α] +···+(−1)[Nα]的性质取决于α/2的连分式展开。由于2/2 \sqrt 2/2的连分式展开式具有有界的部分商,因此SN(2)=O(log({N)) S_N}\left ({\sqrt 2 }\right)=O \left ({\log\left (N \right) }\right),此界是最佳可能。e的连分式展开的偏商增长缓慢,因此SN(2e)=O(log(N)2log log(N)2) {S_N}\left ({2e}\right)=O \left ({{{\log{{\left (N \right)}^2}}\over{\log \, \log{{\left (N \right)}^2}}}}\right),再次为最佳可能。e/2的连分式展开式的部分商的行为与e的相似。令人惊讶的是SN(e)=O(log(N)log log(N)) 1188。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信