Quantized Iterative Learning Control for Formation of Multi-agent System

Chenlong Li, Yong Fang, Jialu Zhang
{"title":"Quantized Iterative Learning Control for Formation of Multi-agent System","authors":"Chenlong Li, Yong Fang, Jialu Zhang","doi":"10.1109/DDCLS.2018.8516113","DOIUrl":null,"url":null,"abstract":"This paper investigates the formation control problem for discrete-time multi-agent systems with switching network topologies and data quantization. It is assumed that the tracking error signals of individual agent are quantized before they are transmitted into the iterative learning controller. However, quantification of data can lead to quantization error, which seriously impacts the performance of multi-agent systems. Based on the nearest neighbor interaction rule, a quantized iterative learning approach is given to overcome the quantization error in the occasion of switching network topologies and guarantee the accurate formation of multi-agent systems simultaneously. Simulation results are provided to verify the effectiveness of the proposed method.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"79 1","pages":"112-116"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8516113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the formation control problem for discrete-time multi-agent systems with switching network topologies and data quantization. It is assumed that the tracking error signals of individual agent are quantized before they are transmitted into the iterative learning controller. However, quantification of data can lead to quantization error, which seriously impacts the performance of multi-agent systems. Based on the nearest neighbor interaction rule, a quantized iterative learning approach is given to overcome the quantization error in the occasion of switching network topologies and guarantee the accurate formation of multi-agent systems simultaneously. Simulation results are provided to verify the effectiveness of the proposed method.
多智能体系统形成的量化迭代学习控制
研究了具有交换网络拓扑结构和数据量化的离散多智能体系统的群体控制问题。假设单个智能体的跟踪误差信号在传递到迭代学习控制器之前是量化的。然而,数据的量化会导致量化误差,严重影响多智能体系统的性能。基于最近邻交互规则,提出了一种量化迭代学习方法,克服了网络拓扑切换时的量化误差,保证了多智能体系统同时准确形成。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信