A Stratification Matrix Viewer for Analysis of Neural Network Data

Philipp Harth, Sumit K. Vohra, D. Udvary, M. Oberländer, H. Hege, D. Baum
{"title":"A Stratification Matrix Viewer for Analysis of Neural Network Data","authors":"Philipp Harth, Sumit K. Vohra, D. Udvary, M. Oberländer, H. Hege, D. Baum","doi":"10.2312/vcbm.20221194","DOIUrl":null,"url":null,"abstract":"The analysis of brain networks is central to neurobiological research. In this context the following tasks often arise: (1) understand the cellular composition of a reconstructed neural tissue volume to determine the nodes of the brain network; (2) quantify connectivity features statistically; and (3) compare these to predictions of mathematical models. We present a framework for interactive, visually supported accomplishment of these tasks. Its central component, the stratification matrix viewer, allows users to visualize the distribution of cellular and/or connectional properties of neurons at different levels of aggregation. We demonstrate its use in four case studies analyzing neural network data from the rat barrel cortex and human temporal cortex.","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"92 1","pages":"117-121"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20221194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The analysis of brain networks is central to neurobiological research. In this context the following tasks often arise: (1) understand the cellular composition of a reconstructed neural tissue volume to determine the nodes of the brain network; (2) quantify connectivity features statistically; and (3) compare these to predictions of mathematical models. We present a framework for interactive, visually supported accomplishment of these tasks. Its central component, the stratification matrix viewer, allows users to visualize the distribution of cellular and/or connectional properties of neurons at different levels of aggregation. We demonstrate its use in four case studies analyzing neural network data from the rat barrel cortex and human temporal cortex.
用于神经网络数据分析的分层矩阵查看器
对大脑网络的分析是神经生物学研究的核心。在这种情况下,经常出现以下任务:(1)了解重建神经组织体积的细胞组成,以确定大脑网络的节点;(2)统计量化连通性特征;(3)将这些结果与数学模型的预测结果进行比较。我们提出了一个交互式的、可视化支持的框架来完成这些任务。它的核心组件,分层矩阵查看器,允许用户可视化不同聚集水平的神经元的细胞和/或连接特性的分布。我们通过分析大鼠桶状皮层和人类颞叶皮层的神经网络数据的四个案例来证明它的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信