How to Avoid Customer Churn in Health Insurance/Plans? A Machine Learn Approach

Jefferson Henrique Camelo Soares, J. L. N. Barbosa, L. A. Lopes, Gilvan Veras Magalhães Júnior, R. Rabêlo, E. Passos, P. S. Neto
{"title":"How to Avoid Customer Churn in Health Insurance/Plans? A Machine Learn Approach","authors":"Jefferson Henrique Camelo Soares, J. L. N. Barbosa, L. A. Lopes, Gilvan Veras Magalhães Júnior, R. Rabêlo, E. Passos, P. S. Neto","doi":"10.1109/CBMS.2019.00115","DOIUrl":null,"url":null,"abstract":"In a Health Plan, beneficiaries can cancel their contracts at any given time. For that reason, Health Insurance/Plan Providers (HIP) need to avoid optional contract cancellations to keep their financial operations stable. This work's main purpose is to develop an approach to predict the optional contract cancellation in a Private HIP and help them to prevent those cancelations.","PeriodicalId":74567,"journal":{"name":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","volume":"3 1","pages":"559-562"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a Health Plan, beneficiaries can cancel their contracts at any given time. For that reason, Health Insurance/Plan Providers (HIP) need to avoid optional contract cancellations to keep their financial operations stable. This work's main purpose is to develop an approach to predict the optional contract cancellation in a Private HIP and help them to prevent those cancelations.
如何避免健康保险/计划的客户流失?机器学习方法
在健康计划中,受益人可以随时取消合同。因此,健康保险/计划提供商(HIP)需要避免选择性的合同取消,以保持其财务运营稳定。本工作的主要目的是开发一种方法来预测私人HIP中的可选合同取消,并帮助他们防止这些取消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信