M. S. Eliwa, M. El-Damcese, A. H. El-Bassiouny, Abhishek Tyag, M. El-Morshedy
{"title":"The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems","authors":"M. S. Eliwa, M. El-Damcese, A. H. El-Bassiouny, Abhishek Tyag, M. El-Morshedy","doi":"10.19139/SOIC-2310-5070-1132","DOIUrl":null,"url":null,"abstract":"Linear and circular consecutive models play a vital role to study the mechanical systems emerging in various fields including survival analysis, reliability theory, biological disciplines, and other lifetime sciences. As a result, analysis of reliability properties of consecutive k − out − of − n : F systems has gained a lot of attention in recent years from a theoretical and practical point of view. In the present article, we have studied some important stochastic and aging properties of residual lifetime of consecutive k − out − of − n : F systems under the condition n − k + 1, k ≤ n and all components of the system are working at time t. The mean residual lifetime (MRL) and its hazard rate function are proposed for the linear consecutive k − out − of − n : F (lin/con/k/n:F) and circular consecutive k − out − of − n : F (cir/con/k/n:F) systems. Furthermore, several mathematical properties of the proposed MRL are examined. Finally, the Weibull distribution with two parameters is used as an example to explain the theoretical results.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-1132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Linear and circular consecutive models play a vital role to study the mechanical systems emerging in various fields including survival analysis, reliability theory, biological disciplines, and other lifetime sciences. As a result, analysis of reliability properties of consecutive k − out − of − n : F systems has gained a lot of attention in recent years from a theoretical and practical point of view. In the present article, we have studied some important stochastic and aging properties of residual lifetime of consecutive k − out − of − n : F systems under the condition n − k + 1, k ≤ n and all components of the system are working at time t. The mean residual lifetime (MRL) and its hazard rate function are proposed for the linear consecutive k − out − of − n : F (lin/con/k/n:F) and circular consecutive k − out − of − n : F (cir/con/k/n:F) systems. Furthermore, several mathematical properties of the proposed MRL are examined. Finally, the Weibull distribution with two parameters is used as an example to explain the theoretical results.