A modified Invasive Weed Optimization algorithm for time-modulated linear antenna array synthesis

Aniruddha Basak, S. Pal, Swagatam Das, A. Abraham, V. Snás̃el
{"title":"A modified Invasive Weed Optimization algorithm for time-modulated linear antenna array synthesis","authors":"Aniruddha Basak, S. Pal, Swagatam Das, A. Abraham, V. Snás̃el","doi":"10.1109/CEC.2010.5586276","DOIUrl":null,"url":null,"abstract":"Time modulated antenna arrays attracted the attention of researchers for the synthesis of low/ultra-low side lobes in recent past. In this article we propose an improved variant of a recently developed ecologically inspired metaheuristic, well-known as Invasive Weed Optimization (IWO), to solve the real parameter optimization problem related to the design of time-modulated linear antenna arrays with ultra low Side Lobe Level (SLL), Side Band Level (SBL) and Main Lobe Beam Width (BWFN). We improvise the classical IWO by introducing two parallel populations and a more explorative routine of changing the mutation step-size with iterations. Experimental results indicate that the proposed algorithm achieves better performance over the design problem as compared to the conventional Taylor Series based method and the only known metaheuristic approach based on the Differential Evolution (DE) algorithm.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"92 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

Time modulated antenna arrays attracted the attention of researchers for the synthesis of low/ultra-low side lobes in recent past. In this article we propose an improved variant of a recently developed ecologically inspired metaheuristic, well-known as Invasive Weed Optimization (IWO), to solve the real parameter optimization problem related to the design of time-modulated linear antenna arrays with ultra low Side Lobe Level (SLL), Side Band Level (SBL) and Main Lobe Beam Width (BWFN). We improvise the classical IWO by introducing two parallel populations and a more explorative routine of changing the mutation step-size with iterations. Experimental results indicate that the proposed algorithm achieves better performance over the design problem as compared to the conventional Taylor Series based method and the only known metaheuristic approach based on the Differential Evolution (DE) algorithm.
一种时调线性天线阵合成的改进入侵杂草优化算法
近年来,时调制天线阵列因其低/超低侧瓣的合成而受到研究人员的关注。在本文中,我们提出了一种改进的生态启发的元启发式算法,即入侵杂草优化(IWO),以解决与超低旁瓣电平(SLL)、旁带电平(SBL)和主瓣波束宽度(BWFN)时调制线性天线阵列设计相关的实际参数优化问题。我们通过引入两个平行种群和一个更具探索性的随迭代改变突变步长的程序来改进经典的IWO。实验结果表明,与传统的基于泰勒级数的方法和唯一已知的基于差分进化(DE)算法的元启发式方法相比,该算法在设计问题上取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信