Temporal Domain Neural Encoder for Video Representation Learning

Hao Hu, Zhaowen Wang, Joon-Young Lee, Zhe L. Lin, Guo-Jun Qi
{"title":"Temporal Domain Neural Encoder for Video Representation Learning","authors":"Hao Hu, Zhaowen Wang, Joon-Young Lee, Zhe L. Lin, Guo-Jun Qi","doi":"10.1109/CVPRW.2017.272","DOIUrl":null,"url":null,"abstract":"We address the challenge of learning good video representations by explicitly modeling the relationship between visual concepts in time space. We propose a novel Temporal Preserving Recurrent Neural Network (TPRNN) that extracts and encodes visual dynamics with frame-level features as input. The proposed network architecture captures temporal dynamics by keeping track of the ordinal relationship of co-occurring visual concepts, and constructs video representations with their temporal order patterns. The resultant video representations effectively encode temporal information of dynamic patterns, which makes them more discriminative to human actions performed with different sequences of action patterns. We evaluate the proposed model on several real video datasets, and the results show that it successfully outperforms the baseline models. In particular, we observe significant improvement on action classes that can only be distinguished by capturing the temporal orders of action patterns.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"7 1","pages":"2192-2199"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We address the challenge of learning good video representations by explicitly modeling the relationship between visual concepts in time space. We propose a novel Temporal Preserving Recurrent Neural Network (TPRNN) that extracts and encodes visual dynamics with frame-level features as input. The proposed network architecture captures temporal dynamics by keeping track of the ordinal relationship of co-occurring visual concepts, and constructs video representations with their temporal order patterns. The resultant video representations effectively encode temporal information of dynamic patterns, which makes them more discriminative to human actions performed with different sequences of action patterns. We evaluate the proposed model on several real video datasets, and the results show that it successfully outperforms the baseline models. In particular, we observe significant improvement on action classes that can only be distinguished by capturing the temporal orders of action patterns.
用于视频表示学习的时域神经编码器
我们通过明确地建模时间空间中视觉概念之间的关系来解决学习良好视频表示的挑战。我们提出了一种新的时域保持递归神经网络(TPRNN),它以帧级特征作为输入提取和编码视觉动态。所提出的网络架构通过跟踪同时发生的视觉概念的顺序关系来捕获时间动态,并构建具有时间顺序模式的视频表示。所得到的视频表示有效地编码了动态模式的时间信息,使其对不同动作模式序列下的人类动作更具辨别能力。我们在几个真实的视频数据集上对所提出的模型进行了评估,结果表明它成功地优于基线模型。特别是,我们观察到操作类的显著改进,这些操作类只能通过捕获操作模式的时间顺序来区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信