Deception Detection using Real-life Trial Data

Verónica Pérez-Rosas, M. Abouelenien, Rada Mihalcea, Mihai Burzo
{"title":"Deception Detection using Real-life Trial Data","authors":"Verónica Pérez-Rosas, M. Abouelenien, Rada Mihalcea, Mihai Burzo","doi":"10.1145/2818346.2820758","DOIUrl":null,"url":null,"abstract":"Hearings of witnesses and defendants play a crucial role when reaching court trial decisions. Given the high-stake nature of trial outcomes, implementing accurate and effective computational methods to evaluate the honesty of court testimonies can offer valuable support during the decision making process. In this paper, we address the identification of deception in real-life trial data. We introduce a novel dataset consisting of videos collected from public court trials. We explore the use of verbal and non-verbal modalities to build a multimodal deception detection system that aims to discriminate between truthful and deceptive statements provided by defendants and witnesses. We achieve classification accuracies in the range of 60-75% when using a model that extracts and fuses features from the linguistic and gesture modalities. In addition, we present a human deception detection study where we evaluate the human capability of detecting deception in trial hearings. The results show that our system outperforms the human capability of identifying deceit.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 167

Abstract

Hearings of witnesses and defendants play a crucial role when reaching court trial decisions. Given the high-stake nature of trial outcomes, implementing accurate and effective computational methods to evaluate the honesty of court testimonies can offer valuable support during the decision making process. In this paper, we address the identification of deception in real-life trial data. We introduce a novel dataset consisting of videos collected from public court trials. We explore the use of verbal and non-verbal modalities to build a multimodal deception detection system that aims to discriminate between truthful and deceptive statements provided by defendants and witnesses. We achieve classification accuracies in the range of 60-75% when using a model that extracts and fuses features from the linguistic and gesture modalities. In addition, we present a human deception detection study where we evaluate the human capability of detecting deception in trial hearings. The results show that our system outperforms the human capability of identifying deceit.
使用真实试验数据进行欺骗检测
证人和被告的听证在法庭作出审判决定时起着至关重要的作用。鉴于审判结果的高风险性质,实施准确有效的计算方法来评估法庭证词的诚实性可以在决策过程中提供有价值的支持。在本文中,我们解决了在现实生活中的试验数据欺骗的识别。我们介绍了一个新的数据集,包括从公开法庭审判中收集的视频。我们探索使用语言和非语言模式来建立一个多模式欺骗检测系统,旨在区分被告和证人提供的真实和欺骗性陈述。当使用从语言和手势模式中提取和融合特征的模型时,我们实现了60-75%的分类精度。此外,我们提出了一项人类欺骗检测研究,我们评估了人类在审判听证会上检测欺骗的能力。结果表明,我们的系统优于人类识别欺骗的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信