Evolution of the radius of analyticity for the generalized Benjamin equation

IF 1.1 3区 数学 Q1 MATHEMATICS
Renata O. Figueira, M. Panthee
{"title":"Evolution of the radius of analyticity for the generalized Benjamin equation","authors":"Renata O. Figueira, M. Panthee","doi":"10.3934/dcds.2023039","DOIUrl":null,"url":null,"abstract":"In this work we consider the initial value problem for the generalized Benjamin equation \\begin{equation}\\label{Benj-IVP} \\begin{cases} \\partial_t u-l\\mathcal{H} \\partial_x^2u-\\partial_x^3u+u^p\\partial_xu = 0, \\quad x,\\; t\\in \\mathbb{R};\\;\\;,\\; p\\geq 1, \\\\ u(x,0) = u_0(x), \\end{cases} \\end{equation} where $u=u(x,t)$ is a real valued function, $0<l<1$ and $\\mathcal{H}$ is the Hilbert transform. This model was introduced by T. B. Benjamin (J. Fluid Mech. 245 (1992) 401--411) and describes unidirectional propagation of long waves in a two-fluid system where the lower fluid with greater density is infinitely deep and the interface is subject to capillarity. We prove that the local solution to the IVP associated with the generalized Benjamin equation for given data in the spaces of functions analytic on a strip around the real axis continue to be analytic without shrinking the width of the strip in time. We also study the evolution in time of the radius of spatial analyticity and show that it can decrease as the time advances. Finally, we present an algebraic lower bound on the possible rate of decrease in time of the uniform radius of spatial analyticity.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"2 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we consider the initial value problem for the generalized Benjamin equation \begin{equation}\label{Benj-IVP} \begin{cases} \partial_t u-l\mathcal{H} \partial_x^2u-\partial_x^3u+u^p\partial_xu = 0, \quad x,\; t\in \mathbb{R};\;\;,\; p\geq 1, \\ u(x,0) = u_0(x), \end{cases} \end{equation} where $u=u(x,t)$ is a real valued function, $0
广义本雅明方程解析半径的演化
本文研究广义本杰明方程\begin{equation}\label{Benj-IVP} \begin{cases} \partial_t u-l\mathcal{H} \partial_x^2u-\partial_x^3u+u^p\partial_xu = 0, \quad x,\; t\in \mathbb{R};\;\;,\; p\geq 1, \\ u(x,0) = u_0(x), \end{cases} \end{equation}的初值问题,其中$u=u(x,t)$为实值函数,$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信