Isolated and structured families of models for stochastic symmetric matrices

IF 0.9 Q3 MATHEMATICS, APPLIED
Cristina Dias, Carla Santos, João Tiago Mexia
{"title":"Isolated and structured families of models for stochastic symmetric matrices","authors":"Cristina Dias,&nbsp;Carla Santos,&nbsp;João Tiago Mexia","doi":"10.1002/cmm4.1152","DOIUrl":null,"url":null,"abstract":"<p>Stochastic symmetric matrices with a dominant eigenvalue, <b><i>α,</i></b>can be written as the sum of <i>λ</i><b><i>αα</i></b><sup><i>t</i></sup> (where <i>λ</i> is the first eigenvalue), with a symmetric error matrix <b><i>E</i></b>. The information in the stochastic matrix will be condensed in its structured vectors, <i>λ</i><b><i>α</i></b>, and the sum of square of residues, <i>V</i>. When the matrices of a family correspond to the treatments of a base design, we say the family is structured. The action of the factors, which are considered in the base design, on the structure vectors of the family matrices will be analyzed. We use ANOVA (Analysis of Variance) and related techniques, to study the action under linear combinations of the components of structure vectors of the <i>m</i> matrices of the model. Orthogonal models with <i>m</i> treatments are associated to orthogonal partitions. The hypothesis to be tested, on the action of the factors in the base design, will be associated to the spaces in the orthogonal partitions. We will show how to carry out transversal and longitudinal analysis for families of stochastic symmetric matrices with dominant eigenvalue associated to orthogonal models.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic symmetric matrices with a dominant eigenvalue, α,can be written as the sum of λααt (where λ is the first eigenvalue), with a symmetric error matrix E. The information in the stochastic matrix will be condensed in its structured vectors, λα, and the sum of square of residues, V. When the matrices of a family correspond to the treatments of a base design, we say the family is structured. The action of the factors, which are considered in the base design, on the structure vectors of the family matrices will be analyzed. We use ANOVA (Analysis of Variance) and related techniques, to study the action under linear combinations of the components of structure vectors of the m matrices of the model. Orthogonal models with m treatments are associated to orthogonal partitions. The hypothesis to be tested, on the action of the factors in the base design, will be associated to the spaces in the orthogonal partitions. We will show how to carry out transversal and longitudinal analysis for families of stochastic symmetric matrices with dominant eigenvalue associated to orthogonal models.

随机对称矩阵的孤立和结构模型族
具有主导特征值α的随机对称矩阵可以写成λααt(其中λ是第一个特征值)与对称误差矩阵e的和。随机矩阵中的信息将被浓缩为其结构化向量λα和残数平方和v。当一个族的矩阵对应于一个基本设计的处理时,我们说这个族是结构化的。在基础设计中考虑的因素对族矩阵结构向量的作用将被分析。我们使用方差分析(ANOVA)和相关技术,来研究模型的m矩阵的结构向量组成的线性组合下的作用。具有m个处理的正交模型与正交分区相关联。待检验的假设,即基础设计中各因素的作用,将与正交分区中的空间相关联。我们将展示如何对与正交模型相关的具有优势特征值的随机对称矩阵族进行横向和纵向分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信