S. Krauss, Barbara Süsser-Rechberger, S. Behzadpour, T. Mayer-Gürr, M. Temmer, Sofia Kroisz, L. Drescher
{"title":"Current status of project SWEETS: Estimating thermospheric neutral mass densities from satellite data at various altitudes","authors":"S. Krauss, Barbara Süsser-Rechberger, S. Behzadpour, T. Mayer-Gürr, M. Temmer, Sofia Kroisz, L. Drescher","doi":"10.5194/EGUSPHERE-EGU21-4174","DOIUrl":null,"url":null,"abstract":"<p>Within the project SWEETS (funded by the FFG Austria) it is intended to develop a forecasting model, to predict the expected impact of solar events, like coronal mass ejections (CMEs), on satellites at different altitudes between 300-800 km. For the realization, scientific data, such as kinematic orbit information and accelerometer measurements, from a wide variety of satellites are incorporated. Based on the evaluation of the impact of several hundred solar events on the thermosphere the forecasting will be realized through a joint analysis and evaluation of solar wind plasma and magnetic field data observed at the Lagrange point L1.<br>In this contribution we show first preliminary results of thermospheric densities estimates based on kinematic orbit information for different satellite missions (e.g., TerraSAR-X, TanDEM-X, Swarm A-C, GRACE, GRACE-FO, CHAMP). To validate the outcome, we compare the results with state-of-the-art thermospheric models as well as with densities estimated from accelerometer measurements if available. Finally, for some specific CME events we will perform a comparison between the post-processed density estimates and results from our preliminary forecasting tool.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-4174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Within the project SWEETS (funded by the FFG Austria) it is intended to develop a forecasting model, to predict the expected impact of solar events, like coronal mass ejections (CMEs), on satellites at different altitudes between 300-800 km. For the realization, scientific data, such as kinematic orbit information and accelerometer measurements, from a wide variety of satellites are incorporated. Based on the evaluation of the impact of several hundred solar events on the thermosphere the forecasting will be realized through a joint analysis and evaluation of solar wind plasma and magnetic field data observed at the Lagrange point L1. In this contribution we show first preliminary results of thermospheric densities estimates based on kinematic orbit information for different satellite missions (e.g., TerraSAR-X, TanDEM-X, Swarm A-C, GRACE, GRACE-FO, CHAMP). To validate the outcome, we compare the results with state-of-the-art thermospheric models as well as with densities estimated from accelerometer measurements if available. Finally, for some specific CME events we will perform a comparison between the post-processed density estimates and results from our preliminary forecasting tool.