Liang Zeng, A. Lengyel, Nergis Tomen, J. V. Gemert
{"title":"Copy-Pasting Coherent Depth Regions Improves Contrastive Learning for Urban-Scene Segmentation","authors":"Liang Zeng, A. Lengyel, Nergis Tomen, J. V. Gemert","doi":"10.48550/arXiv.2211.14074","DOIUrl":null,"url":null,"abstract":"In this work, we leverage estimated depth to boost self-supervised contrastive learning for segmentation of urban scenes, where unlabeled videos are readily available for training self-supervised depth estimation. We argue that the semantics of a coherent group of pixels in 3D space is self-contained and invariant to the contexts in which they appear. We group coherent, semantically related pixels into coherent depth regions given their estimated depth and use copy-paste to synthetically vary their contexts. In this way, cross-context correspondences are built in contrastive learning and a context-invariant representation is learned. For unsupervised semantic segmentation of urban scenes, our method surpasses the previous state-of-the-art baseline by +7.14% in mIoU on Cityscapes and +6.65% on KITTI. For fine-tuning on Cityscapes and KITTI segmentation, our method is competitive with existing models, yet, we do not need to pre-train on ImageNet or COCO, and we are also more computationally efficient. Our code is available on https://github.com/LeungTsang/CPCDR","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"75 1","pages":"893"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.14074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we leverage estimated depth to boost self-supervised contrastive learning for segmentation of urban scenes, where unlabeled videos are readily available for training self-supervised depth estimation. We argue that the semantics of a coherent group of pixels in 3D space is self-contained and invariant to the contexts in which they appear. We group coherent, semantically related pixels into coherent depth regions given their estimated depth and use copy-paste to synthetically vary their contexts. In this way, cross-context correspondences are built in contrastive learning and a context-invariant representation is learned. For unsupervised semantic segmentation of urban scenes, our method surpasses the previous state-of-the-art baseline by +7.14% in mIoU on Cityscapes and +6.65% on KITTI. For fine-tuning on Cityscapes and KITTI segmentation, our method is competitive with existing models, yet, we do not need to pre-train on ImageNet or COCO, and we are also more computationally efficient. Our code is available on https://github.com/LeungTsang/CPCDR