Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Cheng-Jian Xiao, Guang-Wei Meng, Yingkui Zhao
{"title":"Theoretical model of radiation heat wave in two-dimensional cylinder with sleeve","authors":"Cheng-Jian Xiao, Guang-Wei Meng, Yingkui Zhao","doi":"10.1063/5.0119240","DOIUrl":null,"url":null,"abstract":"A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"5 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0119240","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A semi-analytical model is constructed to investigate two-dimensional radiation heat waves (Marshak waves) in a low-Z foam cylinder with a sleeve made of high-Z material. In this model, the energy loss to the high-Z wall is regarded as the primary two-dimensional effect and is taken into account via an indirect approach in which the energy loss is subtracted from the drive source and the wall loss is ignored. The interdependent Marshak waves in the low-Z foam and high-Z wall are used to estimate the energy loss. The energies and the heat front position calculated using the model under typical inertial confinement fusion conditions are verified by simulations. The validated model provides a theoretical tool for studying two-dimensional Marshak waves and should be helpful in providing further understanding of radiation transport.
带套筒的二维圆柱体辐射热波的理论模型
建立了一种半解析模型,研究了低z泡沫筒内高z材料套筒内的二维辐射热波(马沙克波)。在该模型中,高z壁的能量损失被视为主要的二维效应,并通过间接方法考虑,即从驱动源中减去能量损失,忽略壁面损失。利用低z泡沫和高z壁中相互依赖的马沙克波来估计能量损失。通过仿真验证了该模型在典型惯性约束聚变条件下计算的能量和热锋位置。验证的模型为研究二维马沙克波提供了理论工具,有助于进一步了解辐射输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信