Novel Algorithms for Lp-Quasi-Norm Principal-Component Analysis

Dimitris G. Chachlakis, Panos P. Markopoulos
{"title":"Novel Algorithms for Lp-Quasi-Norm Principal-Component Analysis","authors":"Dimitris G. Chachlakis, Panos P. Markopoulos","doi":"10.23919/Eusipco47968.2020.9287335","DOIUrl":null,"url":null,"abstract":"We consider outlier-resistant Lp-quasi-norm (p ≤ 1) Principal-Component Analysis (Lp-PCA) of a D-by-N matrix. It was recently shown that Lp-PCA (p ≤ 1) admits an exact solution by means of combinatorial optimization with computational cost exponential in N. To date, apart from the exact solution to Lp-PCA (p ≤ 1), there exists no converging algorithm of lower cost that approximates its exact solution. In this work, we (i) propose a novel and converging algorithm that approximates the exact solution to Lp-PCA with significantly lower computational cost than that of the exact solver, (ii) conduct formal complexity and convergence analyses, and (iii) propose a multi-component solver based on subspace-deflation. Numerical studies on matrix reconstruction and medical-data classification illustrate the outlier resistance of Lp-PCA.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"83 1","pages":"1045-1049"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider outlier-resistant Lp-quasi-norm (p ≤ 1) Principal-Component Analysis (Lp-PCA) of a D-by-N matrix. It was recently shown that Lp-PCA (p ≤ 1) admits an exact solution by means of combinatorial optimization with computational cost exponential in N. To date, apart from the exact solution to Lp-PCA (p ≤ 1), there exists no converging algorithm of lower cost that approximates its exact solution. In this work, we (i) propose a novel and converging algorithm that approximates the exact solution to Lp-PCA with significantly lower computational cost than that of the exact solver, (ii) conduct formal complexity and convergence analyses, and (iii) propose a multi-component solver based on subspace-deflation. Numerical studies on matrix reconstruction and medical-data classification illustrate the outlier resistance of Lp-PCA.
lp -拟范数主成分分析的新算法
研究了d × n矩阵的抗离群值lp -拟范数(p≤1)主成分分析(Lp-PCA)问题。最近的研究表明,Lp-PCA (p≤1)通过计算代价指数n的组合优化有精确解,迄今为止,除了Lp-PCA (p≤1)的精确解外,没有更低代价的收敛算法逼近其精确解。在这项工作中,我们(i)提出了一种新颖的收敛算法,该算法近似Lp-PCA的精确解,其计算成本明显低于精确求解器,(ii)进行了形式复杂性和收敛性分析,(iii)提出了一种基于子空间压缩的多分量求解器。对矩阵重构和医学数据分类的数值研究表明,Lp-PCA具有抗离群值的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信