M. Harland, Tim B Berberich, M. Katsnelson, A. Lichtenstein
{"title":"Plaquette Valence Bond Theory of Cuprate High-Temperature Superconductivity","authors":"M. Harland, Tim B Berberich, M. Katsnelson, A. Lichtenstein","doi":"10.13189/ujpa.2018.120403","DOIUrl":null,"url":null,"abstract":"We investigate the phenomenon of high-temperature superconductivity within a strong coupling perspective. The occurence is traced to a quantum critical point that is in the phase diagram of the plaquette's t; t0-Hubbard model. We develop a bottom-up approach combining several methods, i.e. exact diagonalization of an isolated plaquette, the Lanczos-method for a plaquette within a bath and cluster dynamical Mean-Field theory with continuous time quantum Monte-Carlo solver to embedd the plaquette in a lattice environment. The quantum critical point is located where the N = 2; 3; 4-sectors of the plaquette cross. This point is also found to show optimal doping. The wave order turns out to be largest at the localized-itinerant transition of the electrons. Furthermore, we present an explenation for the pseudo-gap phenomenon, that is explained by a soft mode related to local singlets of the plaquette. The theory presented here is similar to the resonating valence bond theory, but stresses the importance of local singlets.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujpa.2018.120403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the phenomenon of high-temperature superconductivity within a strong coupling perspective. The occurence is traced to a quantum critical point that is in the phase diagram of the plaquette's t; t0-Hubbard model. We develop a bottom-up approach combining several methods, i.e. exact diagonalization of an isolated plaquette, the Lanczos-method for a plaquette within a bath and cluster dynamical Mean-Field theory with continuous time quantum Monte-Carlo solver to embedd the plaquette in a lattice environment. The quantum critical point is located where the N = 2; 3; 4-sectors of the plaquette cross. This point is also found to show optimal doping. The wave order turns out to be largest at the localized-itinerant transition of the electrons. Furthermore, we present an explenation for the pseudo-gap phenomenon, that is explained by a soft mode related to local singlets of the plaquette. The theory presented here is similar to the resonating valence bond theory, but stresses the importance of local singlets.