Machine Learning and Factor-Based Portfolio Optimization

Mutual Funds Pub Date : 2021-07-08 DOI:10.2139/ssrn.3889459
T. Conlon, J. Cotter, Iason Kynigakis
{"title":"Machine Learning and Factor-Based Portfolio Optimization","authors":"T. Conlon, J. Cotter, Iason Kynigakis","doi":"10.2139/ssrn.3889459","DOIUrl":null,"url":null,"abstract":"We examine machine learning and factor-based portfolio optimization. We find that factors based on autoencoder neural networks exhibit a weaker relationship with commonly used characteristic-sorted portfolios than popular dimensionality reduction techniques. Machine learning methods also lead to covariance and portfolio weight structures that diverge from simpler estimators. Minimum-variance portfolios using latent factors derived from autoencoders and sparse methods outperform simpler benchmarks in terms of risk minimization. These effects are amplified for investors with an increased sensitivity to risk-adjusted returns, during high volatility periods or when accounting for tail risk.","PeriodicalId":18891,"journal":{"name":"Mutual Funds","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutual Funds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3889459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We examine machine learning and factor-based portfolio optimization. We find that factors based on autoencoder neural networks exhibit a weaker relationship with commonly used characteristic-sorted portfolios than popular dimensionality reduction techniques. Machine learning methods also lead to covariance and portfolio weight structures that diverge from simpler estimators. Minimum-variance portfolios using latent factors derived from autoencoders and sparse methods outperform simpler benchmarks in terms of risk minimization. These effects are amplified for investors with an increased sensitivity to risk-adjusted returns, during high volatility periods or when accounting for tail risk.
机器学习和基于因子的投资组合优化
我们研究了机器学习和基于因素的投资组合优化。我们发现,与常用的降维技术相比,基于自编码器神经网络的因素与常用的特征排序组合的关系较弱。机器学习方法还会导致协方差和投资组合权重结构与更简单的估计器不同。使用自编码器和稀疏方法衍生的潜在因素的最小方差投资组合在风险最小化方面优于简单的基准。在高波动期或考虑尾部风险时,对于对风险调整回报更敏感的投资者来说,这些影响会被放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信