Match: differentiable material graphs for procedural material capture

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, T. Boubekeur, R. Mech, W. Matusik
{"title":"Match: differentiable material graphs for procedural material capture","authors":"Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, T. Boubekeur, R. Mech, W. Matusik","doi":"10.1145/3414685.3417781","DOIUrl":null,"url":null,"abstract":"that maps node graph parameters to rendered images. This facilitates the use of gradient-based optimization to estimate the parameters such that the resulting material, when rendered, matches the target image appearance, as quantified by a style transfer loss. In addition, we propose a deep neural feature-based graph selection and parameter initialization method that efficiently scales to a large number of procedural graphs. We evaluate our method on both rendered synthetic materials and real materials captured as flash photographs. We demonstrate that MATch can reconstruct more accurate, general, and complex procedural materials compared to the state-of-the-art. Moreover, by producing a procedural output, we unlock capabilities such as constructing arbitrary-resolution material maps and parametrically editing the material appearance.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"18 1","pages":"196:1-196:15"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3414685.3417781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

that maps node graph parameters to rendered images. This facilitates the use of gradient-based optimization to estimate the parameters such that the resulting material, when rendered, matches the target image appearance, as quantified by a style transfer loss. In addition, we propose a deep neural feature-based graph selection and parameter initialization method that efficiently scales to a large number of procedural graphs. We evaluate our method on both rendered synthetic materials and real materials captured as flash photographs. We demonstrate that MATch can reconstruct more accurate, general, and complex procedural materials compared to the state-of-the-art. Moreover, by producing a procedural output, we unlock capabilities such as constructing arbitrary-resolution material maps and parametrically editing the material appearance.
匹配:用于程序材料捕获的可微分材料图
它将节点图参数映射到呈现的图像。这有助于使用基于梯度的优化来估计参数,以便在渲染时产生的材料与目标图像外观相匹配,并通过样式转移损失进行量化。此外,我们提出了一种基于深度神经特征的图选择和参数初始化方法,该方法可以有效地扩展到大量的过程图。我们在渲染合成材料和作为闪光灯照片捕获的真实材料上评估我们的方法。我们证明,与最先进的程序材料相比,MATch可以重建更准确、更一般和更复杂的程序材料。此外,通过生成程序输出,我们解锁了诸如构建任意分辨率材质图和参数化编辑材质外观等功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信