Enhanced imagistic methodologies augmenting radiological image processing in interstitial lung diseases

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
József Palatka, L. Kovács, László Szilágyi
{"title":"Enhanced imagistic methodologies augmenting radiological image processing in interstitial lung diseases","authors":"József Palatka, L. Kovács, László Szilágyi","doi":"10.2478/ausi-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract Interstitial Lung Diseases (ILDs) represent a heterogeneous group of several rare diseases that are di cult to predict, diagnose and monitor. There are no predictive biomarkers for ILDs, clinical signs are similar to the ones for other lung diseases, the radiological features are not easy to recognize, and require manual radiologist review. Data-driven support for ILD prediction, diagnosis and disease-course monitoring are great unmet need. Numerous image processing techniques and computer-aided diagnostic and decision-making support methods have been developed over the recent years. The current review focuses on such solutions, discussing advancements on the fields of Quantitative CT, Complex Networks, and Convolutional Neural Networks.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"48 1","pages":"146 - 169"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Interstitial Lung Diseases (ILDs) represent a heterogeneous group of several rare diseases that are di cult to predict, diagnose and monitor. There are no predictive biomarkers for ILDs, clinical signs are similar to the ones for other lung diseases, the radiological features are not easy to recognize, and require manual radiologist review. Data-driven support for ILD prediction, diagnosis and disease-course monitoring are great unmet need. Numerous image processing techniques and computer-aided diagnostic and decision-making support methods have been developed over the recent years. The current review focuses on such solutions, discussing advancements on the fields of Quantitative CT, Complex Networks, and Convolutional Neural Networks.
增强成像方法增强间质性肺疾病的放射图像处理
肺间质性疾病(ILDs)是一组异质性的罕见疾病,难以预测、诊断和监测。ild没有可预测的生物标志物,临床体征与其他肺部疾病相似,影像学特征不易识别,需要放射科医生手工检查。对ILD预测、诊断和病程监测的数据驱动支持是巨大的未满足需求。近年来,许多图像处理技术和计算机辅助诊断和决策支持方法得到了发展。当前的综述集中在这些解决方案上,讨论了定量CT、复杂网络和卷积神经网络领域的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信