Split Window Algorithm Calibration and Validation for TASI Sensor

Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti
{"title":"Split Window Algorithm Calibration and Validation for TASI Sensor","authors":"Victoria Ionca, M. Bogliolo, G. Laneve, G. Liberti, A. Palombo, S. Pignatti","doi":"10.1109/IGARSS.2019.8898750","DOIUrl":null,"url":null,"abstract":"In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"14 1","pages":"3420-3423"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present the calibration and validation method we have applied in order to retrieve the split window (SW) coefficients for land surface temperature (LST) estimations from Thermal Airborne Spectrographic imager (TASI). For calibration and validation two different datasets has been used, both extracted from SeeBor V5.0 training dataset. The coefficients have been retrieved by a multiple regression analysis and MODTRAN simulations. For the radiative transfer experiment, we considered seven different viewing angles in a range between 0° and 60° with a step of 10°. Simulations have been performed considering all TASI channel combinations and the sensor spectral response functions. Preliminary results are presented for best band combinations suitable for SW algorithm application; these are channel 19 (10.034 gm) with 28 (11.024 gm), and channel 29 (11.134 gm) with 31 (11.354 gm). Finally, validation of the LST retrievals presents a RMSE lower than 0.6 K for both band combinations.
TASI传感器的分窗算法标定与验证
在这项工作中,我们提出了我们应用的校准和验证方法,以便从热机载光谱成像仪(TASI)检索地表温度(LST)估计的分裂窗口(SW)系数。为了校准和验证,使用了两个不同的数据集,都是从SeeBor V5.0训练数据集中提取的。通过多元回归分析和MODTRAN模拟反演了系数。对于辐射传递实验,我们考虑了0°到60°范围内的7种不同视角,步长为10°。考虑了所有TASI通道组合和传感器光谱响应函数,进行了仿真。给出了适合于SW算法应用的最佳频段组合的初步结果;分别是19号通道(10.034克)和28号通道(11.024克),以及29号通道(11.134克)和31号通道(11.354克)。最后,对LST检索结果的验证表明,两种波段组合的RMSE均低于0.6 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信