Y. Nunez, Munir Bashir, F. Ruíz, Rakesh Kumar, M. Sameer, Ahmed Abdulla Al Mutawa, E. A. Al Shamisi, I. Hamdy, Hesham Mounir, Mohammed Aseel, Masita F. Akbarina
{"title":"First Application of Hybrid Bit Technology to Optimize Drilling Through S Shape Directional Section with High Chert Content in UAE Land Operations","authors":"Y. Nunez, Munir Bashir, F. Ruíz, Rakesh Kumar, M. Sameer, Ahmed Abdulla Al Mutawa, E. A. Al Shamisi, I. Hamdy, Hesham Mounir, Mohammed Aseel, Masita F. Akbarina","doi":"10.2118/208120-ms","DOIUrl":null,"url":null,"abstract":"\n This paper highlights the solution, execution, and evaluation of the first 12.25″ application of hybrid bit on rotary steerable system in S-Shape directional application to drill interbedded formations with up to 25 % chert content in UAE land operations.\n The main challenge that the solution overcame is to drill through the hard chert layers while avoiding trips due to PDC bit damage nor drilling hour's limitation of TCI bit while improving the overall ROP and achieving the directional requirement. The solution package has demonstrated a superior ROP over rollercone bits, as well as improved PDC cutter durability and lower reactive torque leading to better steerability and stability which will be detailed in this paper.\n A significant contributor to such success was utilizing a new hybrid bit technology which incorporates the dual cutting mechanisms of both polycrystalline Diamond Compact (PDC) and rollercone bits. This allows a more efficient drilling by bringing the durability of the crushing action of rollercone to drill through hard interbedded lithology and the effectiveness of the shearing action of PDC cutters to improve ROP without sacrificing the toughness of the cutting structure edge.\n The proposed solution in combined with continues proportional rotary steering system managed to drill 4,670 ft through heterogeneous formation with chert nodules, with an average ROP of 38.29 ft\\hr improving ROP by 15% and eliminating extra trips of utilizing roller cone bits to be able to drill though the chert nodules and avoid the PDC bit damage.\n Leading reduction in cost per foot by 35 %. Additionally, the hybrid bit exceed the expectation achieving 878 thousand of revolutions, with effective bearing and with the drilling cutting structure in a very good condition. Furthermore, the directional objectives were met with high quality directional drilling avoiding wellbore tortuosity. Such success was established through application analysis, specific formations drilling roadmaps and optimized drilling parameters in order to improve the overall run efficiency.\n The combination of roller cone and PDC elements in a hybrid bit designed to deliver better efficiency and torque stability significantly increased performance drilling the section in one single run, proven that heterogeneous formations can be drill.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208120-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper highlights the solution, execution, and evaluation of the first 12.25″ application of hybrid bit on rotary steerable system in S-Shape directional application to drill interbedded formations with up to 25 % chert content in UAE land operations.
The main challenge that the solution overcame is to drill through the hard chert layers while avoiding trips due to PDC bit damage nor drilling hour's limitation of TCI bit while improving the overall ROP and achieving the directional requirement. The solution package has demonstrated a superior ROP over rollercone bits, as well as improved PDC cutter durability and lower reactive torque leading to better steerability and stability which will be detailed in this paper.
A significant contributor to such success was utilizing a new hybrid bit technology which incorporates the dual cutting mechanisms of both polycrystalline Diamond Compact (PDC) and rollercone bits. This allows a more efficient drilling by bringing the durability of the crushing action of rollercone to drill through hard interbedded lithology and the effectiveness of the shearing action of PDC cutters to improve ROP without sacrificing the toughness of the cutting structure edge.
The proposed solution in combined with continues proportional rotary steering system managed to drill 4,670 ft through heterogeneous formation with chert nodules, with an average ROP of 38.29 ft\hr improving ROP by 15% and eliminating extra trips of utilizing roller cone bits to be able to drill though the chert nodules and avoid the PDC bit damage.
Leading reduction in cost per foot by 35 %. Additionally, the hybrid bit exceed the expectation achieving 878 thousand of revolutions, with effective bearing and with the drilling cutting structure in a very good condition. Furthermore, the directional objectives were met with high quality directional drilling avoiding wellbore tortuosity. Such success was established through application analysis, specific formations drilling roadmaps and optimized drilling parameters in order to improve the overall run efficiency.
The combination of roller cone and PDC elements in a hybrid bit designed to deliver better efficiency and torque stability significantly increased performance drilling the section in one single run, proven that heterogeneous formations can be drill.