On Gröbner Bases and Their Uses in Solving System of Polynomial Equations and Graph Coloring

IF 0.3 Q4 MATHEMATICS
Haridas kumar Das, Nasim Reza
{"title":"On Gröbner Bases and Their Uses in Solving System of Polynomial Equations and Graph Coloring","authors":"Haridas kumar Das, Nasim Reza","doi":"10.3844/JMSSP.2018.175.182","DOIUrl":null,"url":null,"abstract":"This paper is based on the analytic and computational solution procedures of Grobner basis and its applications. We show the behavior of the ideals generated by polynomials from a polynomial ring. We also present the idea of a zero dimensional ideal and use of this ideal to solve system of polynomial equations. We then introduce an algorithmic procedure for solving a system of polynomial equations (linear and nonlinear) with a finite number of solutions extending the idea of Grobner basis. Finally we explore the idea of Grobner basis for coloring the vertices of a given graph. We illustrate the stated results through a number of examples. Moreover, as for auxilary and making comparison with the analytic results, we use Mathematica 9.0.1 to develop some computer algebra.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"92 1","pages":"175-182"},"PeriodicalIF":0.3000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.175.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is based on the analytic and computational solution procedures of Grobner basis and its applications. We show the behavior of the ideals generated by polynomials from a polynomial ring. We also present the idea of a zero dimensional ideal and use of this ideal to solve system of polynomial equations. We then introduce an algorithmic procedure for solving a system of polynomial equations (linear and nonlinear) with a finite number of solutions extending the idea of Grobner basis. Finally we explore the idea of Grobner basis for coloring the vertices of a given graph. We illustrate the stated results through a number of examples. Moreover, as for auxilary and making comparison with the analytic results, we use Mathematica 9.0.1 to develop some computer algebra.
Gröbner基及其在多项式方程组求解和图着色中的应用
本文以Grobner基的解析解和计算解程序及其应用为基础。我们给出了多项式环上多项式所产生的理想的行为。我们还提出了零维理想的概念,并利用这种理想来求解多项式方程组。然后,我们介绍了求解具有有限个数解的多项式方程组(线性和非线性)的算法过程,扩展了Grobner基的思想。最后,我们探讨了格罗布纳基在给定图顶点上色的思想。我们通过一些例子来说明上述结果。此外,为了辅助分析结果并与分析结果进行比较,我们使用Mathematica 9.0.1开发了一些计算机代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信