MLCHECK– Property-Driven Testing of Machine Learning Classifiers

Arnab Sharma, Caglar Demir, A. N. Ngomo, H. Wehrheim
{"title":"MLCHECK– Property-Driven Testing of Machine Learning Classifiers","authors":"Arnab Sharma, Caglar Demir, A. N. Ngomo, H. Wehrheim","doi":"10.1109/ICMLA52953.2021.00123","DOIUrl":null,"url":null,"abstract":"An increasing amount of software with machine learning components is being deployed. This poses the question of quality assurance for such components: how can we validate whether specified requirements are fulfilled by a machine learned software? Current testing and verification approaches either focus on a single requirement (e.g., fairness) or specialize in a single type of machine learning model (e.g., neural networks). We propose the property-driven testing of machine learning models. Our approach MLCHECK encompasses (1) a language for property specification, and (2) a technique for systematic test case generation. The specification language is comparable to property-based testing languages. The test case generation employs an elaborate verification method for a systematic, property-dependent construction of test suites, without additional user-supplied generator functions. We evaluate MLCHECK using requirements and data sets from three different application areas (software discrimination, learning on knowledge graphs and security). Our evaluation shows that in addition to its generality, MLCHECK can outperform specialised testing approaches while having a comparable runtime.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"82 1","pages":"738-745"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An increasing amount of software with machine learning components is being deployed. This poses the question of quality assurance for such components: how can we validate whether specified requirements are fulfilled by a machine learned software? Current testing and verification approaches either focus on a single requirement (e.g., fairness) or specialize in a single type of machine learning model (e.g., neural networks). We propose the property-driven testing of machine learning models. Our approach MLCHECK encompasses (1) a language for property specification, and (2) a technique for systematic test case generation. The specification language is comparable to property-based testing languages. The test case generation employs an elaborate verification method for a systematic, property-dependent construction of test suites, without additional user-supplied generator functions. We evaluate MLCHECK using requirements and data sets from three different application areas (software discrimination, learning on knowledge graphs and security). Our evaluation shows that in addition to its generality, MLCHECK can outperform specialised testing approaches while having a comparable runtime.
机器学习分类器的属性驱动测试
越来越多的带有机器学习组件的软件正在被部署。这就为这样的组件提出了质量保证的问题:我们如何验证机器学习软件是否满足了指定的需求?当前的测试和验证方法要么专注于单一需求(例如,公平性),要么专注于单一类型的机器学习模型(例如,神经网络)。我们提出了机器学习模型的属性驱动测试。我们的方法MLCHECK包含(1)用于属性规范的语言,以及(2)用于系统测试用例生成的技术。规范语言可与基于属性的测试语言相媲美。测试用例的生成采用了一种详细的验证方法,用于系统的、与属性相关的测试套件构造,而不需要额外的用户提供的生成器功能。我们使用来自三个不同应用领域(软件识别、知识图学习和安全性)的需求和数据集来评估MLCHECK。我们的评估表明,除了它的通用性之外,MLCHECK还可以在具有可比运行时的情况下优于专门的测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信