Novel reconfigurable hardware implementation of polynomial matrix/vector multiplications

Server Kasap, Soydan Redif
{"title":"Novel reconfigurable hardware implementation of polynomial matrix/vector multiplications","authors":"Server Kasap, Soydan Redif","doi":"10.1109/FPT.2014.7082785","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel reconfigurable hardware architecture for computing the polynomial matrix multiplication (PMM) of polynomial matrices/vectors. The proposed algorithm exploits an extension of the fast convolution technique to multiple-input, multiple-output (MIMO) systems. The proposed architecture is the first one devoted to the hardware implementation of PMM. Hardware implementation of the algorithm is achieved via a highly pipelined, partly systolic FPGA architecture. We verify the algorithmic accuracy of the architecture, which is scalable in terms of the order of the input matrices, through FPGA-in-the-loop hardware co-simulations. Results are presented to demonstrate the accuracy and capability of the architecture.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"18 1","pages":"243-247"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a novel reconfigurable hardware architecture for computing the polynomial matrix multiplication (PMM) of polynomial matrices/vectors. The proposed algorithm exploits an extension of the fast convolution technique to multiple-input, multiple-output (MIMO) systems. The proposed architecture is the first one devoted to the hardware implementation of PMM. Hardware implementation of the algorithm is achieved via a highly pipelined, partly systolic FPGA architecture. We verify the algorithmic accuracy of the architecture, which is scalable in terms of the order of the input matrices, through FPGA-in-the-loop hardware co-simulations. Results are presented to demonstrate the accuracy and capability of the architecture.
新颖的可重构多项式矩阵/矢量乘法的硬件实现
本文介绍了一种新的可重构硬件结构,用于计算多项式矩阵/向量的多项式矩阵乘法。该算法将快速卷积技术扩展到多输入多输出(MIMO)系统。所提出的体系结构是第一个致力于PMM硬件实现的体系结构。该算法的硬件实现是通过高度流水线,部分收缩FPGA架构实现的。我们通过fpga在环硬件联合仿真验证了该架构的算法准确性,该架构可根据输入矩阵的顺序进行扩展。结果表明了该体系结构的准确性和能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信