{"title":"Development of Ellipsoidal Analysis and Filtering Methods for Nonlinear Control Stochastic Systems","authors":"I. Sinitsyn, V. Sinitsyn, Edward R. Korepanov","doi":"10.5772/intechopen.90732","DOIUrl":null,"url":null,"abstract":"The methods of the control stochastic systems (CStS) research based on the parametrization of the distributions permit to design practically simple software tools. These methods give the rapid increase of the number of equations for the moments, the semiinvariants, coefficients of the truncated orthogonal expansions of the state vector Y, and the maximal order of the moments involved. For structural parametrization of the probability (normalized and nonnormalized) densities, we shall apply the ellipsoidal densities. A normal distribution has an ellipsoidal structure. The distinctive characteristics of such distributions consist in the fact that their densities are the functions of positively determined quadratic form of the centered state vector. Ellipsoidal approximation method (EAM) cardinally reduces the number of parameters. For ellipsoidal linearization method (ELM), the number of equations coincides with normal approximation method (NAM). The development of EAM (ELM) for CStS analysis and CStS filtering are considered. Based on nonnormalized densities, new types of filters are designed. The theory of ellipsoidal Pugachev conditionally optimal control is presented. Basic applications are considered.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The methods of the control stochastic systems (CStS) research based on the parametrization of the distributions permit to design practically simple software tools. These methods give the rapid increase of the number of equations for the moments, the semiinvariants, coefficients of the truncated orthogonal expansions of the state vector Y, and the maximal order of the moments involved. For structural parametrization of the probability (normalized and nonnormalized) densities, we shall apply the ellipsoidal densities. A normal distribution has an ellipsoidal structure. The distinctive characteristics of such distributions consist in the fact that their densities are the functions of positively determined quadratic form of the centered state vector. Ellipsoidal approximation method (EAM) cardinally reduces the number of parameters. For ellipsoidal linearization method (ELM), the number of equations coincides with normal approximation method (NAM). The development of EAM (ELM) for CStS analysis and CStS filtering are considered. Based on nonnormalized densities, new types of filters are designed. The theory of ellipsoidal Pugachev conditionally optimal control is presented. Basic applications are considered.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications