Self-Attention Mechanism in GANs for Molecule Generation

S. Chinnareddy, Pranav Grandhi, Apurva Narayan
{"title":"Self-Attention Mechanism in GANs for Molecule Generation","authors":"S. Chinnareddy, Pranav Grandhi, Apurva Narayan","doi":"10.1109/ICMLA52953.2021.00017","DOIUrl":null,"url":null,"abstract":"In discrete sequence based Generative Adversarial Networks (GANs), it is important to both land the samples in the initial distribution and drive the generation towards desirable properties. However, in the case of longer molecules, the existing models seem to under-perform in producing new molecules. In this work, we propose the use of Self-Attention mechanism for Generative Adversarial Networks to allow long range dependencies. Self-Attention mechanism has produced improved rewards in novelty and promising results in generating molecules.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"64 1","pages":"57-60"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In discrete sequence based Generative Adversarial Networks (GANs), it is important to both land the samples in the initial distribution and drive the generation towards desirable properties. However, in the case of longer molecules, the existing models seem to under-perform in producing new molecules. In this work, we propose the use of Self-Attention mechanism for Generative Adversarial Networks to allow long range dependencies. Self-Attention mechanism has produced improved rewards in novelty and promising results in generating molecules.
gan分子生成的自注意机制
在基于离散序列的生成对抗网络(GANs)中,重要的是将样本置于初始分布中并使生成朝着理想的性质发展。然而,在长分子的情况下,现有的模型似乎在产生新分子方面表现不佳。在这项工作中,我们建议在生成对抗网络中使用自注意机制来允许长距离依赖。自注意机制在新颖性奖励和分子生成方面取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信