Zhilin Cheng, Z. Ning, Qing Wang, Mingqi Li, W. Sui
{"title":"Experimental Investigation of Boundary Conditions Effects on Spontaneous Imbibition in Oil-Water and Gas-Water Systems for Tight Sandstones","authors":"Zhilin Cheng, Z. Ning, Qing Wang, Mingqi Li, W. Sui","doi":"10.2118/194858-MS","DOIUrl":null,"url":null,"abstract":"\n As potential alternative resources, tight oil and gas reservoirs are generally exploited with multistage hydraulic fracturing technology to meet the rising demand for energy in the world. Considerable production recovered by the infiltration of fracturing fluids into the rock matrix shows that spontaneous imbibition (SI) is an effective oil recovery method. Through the use of Nuclear Magnetic Resonance (NMR) detection technique, the features of SI in oil-water and gas-water systems for tight sandstones were studied. The T2 spectra of these samples were used to reflect the migration patterns of fluids in various pores under different imbibition systems. In addition, the impacts of the boundary conditions on imbibition outcomes were also determined via the variations in T2 spectra under imbibition stages. The results indicate that tight sandstone samples display the feature of complex pore structure with a wide range of pore size distribution, and the dominant types are micropores and small mesopores. With the progression of imbibition experiments, oil in micropores will be more easily displaced by wetting fluid and flow out through interconnected smaller pores due to greater capillary pressure. The majority of the production through imbibition can be attributed to the contribution made by the micropores. However, water could not enter the mesopores readily under the gas-water system if it is only driven by capillary pressure owing to the snap-off effect of gas. The boundary conditions have notable effects on the imbibition rate and ultimate recovery for the oil-water system and increasing the areas available for water imbibition helps to maintain higher imbibition rate and recovery. However, regarding the gas-water system, boundary conditions have little influence on the imbibition recovery but have a remarkable influence on the imbibition rate. The traditional scaling equations used to scale the imbibition data for both the oil-water and gas-water systems and predict imbibition recovery is acceptable if the wettability of the tight medium remains unchanged. This research aims to uncover the imbibition characteristics of fluids and the nontrivial effect of boundary conditions in tight sandstone samples, which would contribute to the successful development of tight formations.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194858-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
As potential alternative resources, tight oil and gas reservoirs are generally exploited with multistage hydraulic fracturing technology to meet the rising demand for energy in the world. Considerable production recovered by the infiltration of fracturing fluids into the rock matrix shows that spontaneous imbibition (SI) is an effective oil recovery method. Through the use of Nuclear Magnetic Resonance (NMR) detection technique, the features of SI in oil-water and gas-water systems for tight sandstones were studied. The T2 spectra of these samples were used to reflect the migration patterns of fluids in various pores under different imbibition systems. In addition, the impacts of the boundary conditions on imbibition outcomes were also determined via the variations in T2 spectra under imbibition stages. The results indicate that tight sandstone samples display the feature of complex pore structure with a wide range of pore size distribution, and the dominant types are micropores and small mesopores. With the progression of imbibition experiments, oil in micropores will be more easily displaced by wetting fluid and flow out through interconnected smaller pores due to greater capillary pressure. The majority of the production through imbibition can be attributed to the contribution made by the micropores. However, water could not enter the mesopores readily under the gas-water system if it is only driven by capillary pressure owing to the snap-off effect of gas. The boundary conditions have notable effects on the imbibition rate and ultimate recovery for the oil-water system and increasing the areas available for water imbibition helps to maintain higher imbibition rate and recovery. However, regarding the gas-water system, boundary conditions have little influence on the imbibition recovery but have a remarkable influence on the imbibition rate. The traditional scaling equations used to scale the imbibition data for both the oil-water and gas-water systems and predict imbibition recovery is acceptable if the wettability of the tight medium remains unchanged. This research aims to uncover the imbibition characteristics of fluids and the nontrivial effect of boundary conditions in tight sandstone samples, which would contribute to the successful development of tight formations.