J. Kasbohm, B. Schoene, S. MacLennan, D. Evans, B. Weiss
{"title":"PALEOGEOGRAPHY AND HIGH-PRECISION GEOCHRONOLOGY OF THE NEOARCHEAN FORTESCUE GROUP, PILBARA, WESTERN AUSTRALIA","authors":"J. Kasbohm, B. Schoene, S. MacLennan, D. Evans, B. Weiss","doi":"10.1130/abs/2022am-380336","DOIUrl":null,"url":null,"abstract":"While rates of Phanerozoic plate movements and magnetic field reversals have been well studied, little is known about such phenomena on early Earth. The ca. 2.8 – 2.7 Ga Fortescue Group on the Pilbara craton in Western Australia has been recognized as a well-preserved sequence of Archean rift volcanics thought to derive from a flood basalt province, and may have been moving rapidly across the globe at two different intervals in its depositional history. We present the results of a magnetostratigraphic study integrated with high-precision U-Pb ID-TIMS geochronology aiming to quantify rates of cratonic motion and provide a continuous time series for changes in Pilbara paleogeography during these two rapid intervals, at ~2.77 and 2.72 Ga. We provide six new or updated high-quality paleomagnetic poles for inclusion in databases tracking Precambrian cratonic motion. During the craton ’ s largest geographic displacement at ~2.77 Ga, we resolve a minimum drift rate of 23 ± 20 cm/a if there was substantial rotation of the Pilbara craton along with translational motion, and a more rapid minimum estimate of 64 ± 23 cm/a if the motion was dominated by translation; these estimates exceed both Mesoarchean and most modern rates of plate motion. We provide a new high-precision U-Pb zircon age of 2721.23 ± 0.88/0.88/6.9 Ma for the Tumbiana Formation stromatolite colony, which developed as the Pilbara craton drifted from 51.5 ± 7.0 ◦ to 32.1 ± 5.7 ◦ paleolatitude. Although the Fortescue Group has been considered an early prototype of large igneous provinces, it was emplaced over a longer duration than its Phanerozoic counterparts and does not fit at least one definition of a large igneous province (LIP). But as a potential prototype of LIP magmatism, the Fortescue succession chronicles eruptive dynamics, rapid paleogeographic changes, and a series of robustly determined magnetic field reversals during the Neoarchean.","PeriodicalId":12535,"journal":{"name":"Geological Society of America Abstracts with Programs","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Abstracts with Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/abs/2022am-380336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While rates of Phanerozoic plate movements and magnetic field reversals have been well studied, little is known about such phenomena on early Earth. The ca. 2.8 – 2.7 Ga Fortescue Group on the Pilbara craton in Western Australia has been recognized as a well-preserved sequence of Archean rift volcanics thought to derive from a flood basalt province, and may have been moving rapidly across the globe at two different intervals in its depositional history. We present the results of a magnetostratigraphic study integrated with high-precision U-Pb ID-TIMS geochronology aiming to quantify rates of cratonic motion and provide a continuous time series for changes in Pilbara paleogeography during these two rapid intervals, at ~2.77 and 2.72 Ga. We provide six new or updated high-quality paleomagnetic poles for inclusion in databases tracking Precambrian cratonic motion. During the craton ’ s largest geographic displacement at ~2.77 Ga, we resolve a minimum drift rate of 23 ± 20 cm/a if there was substantial rotation of the Pilbara craton along with translational motion, and a more rapid minimum estimate of 64 ± 23 cm/a if the motion was dominated by translation; these estimates exceed both Mesoarchean and most modern rates of plate motion. We provide a new high-precision U-Pb zircon age of 2721.23 ± 0.88/0.88/6.9 Ma for the Tumbiana Formation stromatolite colony, which developed as the Pilbara craton drifted from 51.5 ± 7.0 ◦ to 32.1 ± 5.7 ◦ paleolatitude. Although the Fortescue Group has been considered an early prototype of large igneous provinces, it was emplaced over a longer duration than its Phanerozoic counterparts and does not fit at least one definition of a large igneous province (LIP). But as a potential prototype of LIP magmatism, the Fortescue succession chronicles eruptive dynamics, rapid paleogeographic changes, and a series of robustly determined magnetic field reversals during the Neoarchean.