Crashworthiness Performance of Aluminium, GFRP and Hybrid Aluminium/GFRP Circular Tubes under Quasi-Static and Dynamic Axial Loading Conditions: A Comparative Experimental Study

S. Lykakos, P. Kostazos, Odysseas-Vasilios Venetsanos, D. Manolakos
{"title":"Crashworthiness Performance of Aluminium, GFRP and Hybrid Aluminium/GFRP Circular Tubes under Quasi-Static and Dynamic Axial Loading Conditions: A Comparative Experimental Study","authors":"S. Lykakos, P. Kostazos, Odysseas-Vasilios Venetsanos, D. Manolakos","doi":"10.3390/dynamics1010004","DOIUrl":null,"url":null,"abstract":"Offshore structures are exposed to risks of vessel collisions and impacts from dropped objects. Tubular members are extensively used in offshore construction, and thus, there is scope to investigate their crashworthiness behaviour. Aluminium, glass fibre reinforced polymer (GFRP) and hybrid aluminium/GFRP circular tube specimens were fabricated and then tested under quasi-static and dynamic axial loading conditions. Two hybrid configurations were examined: external and internal layers from respectively aluminium and GFRP, and vice versa. The material impregnated with epoxy resin woven glass fabric was allowed to cure attached to the aluminium layer to ensure interlayer bonding. The quasi-static and dynamic tests were conducted using respectively a universal testing machine at a prescribed crosshead speed of 10 mm/min, and a 78 kg drop hammer released from 2.5 m. The non-hybrid configurations (aluminium and GFRP specimens) outperformed their hybrid counterparts in terms of crashworthiness characteristics.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics1010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Offshore structures are exposed to risks of vessel collisions and impacts from dropped objects. Tubular members are extensively used in offshore construction, and thus, there is scope to investigate their crashworthiness behaviour. Aluminium, glass fibre reinforced polymer (GFRP) and hybrid aluminium/GFRP circular tube specimens were fabricated and then tested under quasi-static and dynamic axial loading conditions. Two hybrid configurations were examined: external and internal layers from respectively aluminium and GFRP, and vice versa. The material impregnated with epoxy resin woven glass fabric was allowed to cure attached to the aluminium layer to ensure interlayer bonding. The quasi-static and dynamic tests were conducted using respectively a universal testing machine at a prescribed crosshead speed of 10 mm/min, and a 78 kg drop hammer released from 2.5 m. The non-hybrid configurations (aluminium and GFRP specimens) outperformed their hybrid counterparts in terms of crashworthiness characteristics.
准静态和动态轴向载荷条件下铝、GFRP及铝/GFRP复合圆管耐撞性能对比试验研究
海上建筑面临着船舶碰撞和坠物撞击的风险。管状构件广泛应用于海工建筑,因此对其耐撞性能进行研究是有必要的。制备了铝、玻璃纤维增强聚合物(GFRP)和铝/GFRP复合圆管试件,分别在准静态和动态轴向加载条件下进行了试验。研究了两种混合结构:分别由铝和玻璃钢制成的外层和内层,反之亦然。浸渍环氧树脂玻璃织物的材料被允许固化附着在铝层上,以保证层间的粘接。准静态试验和动态试验分别采用通用试验机,在规定的十字头速度为10 mm/min,从2.5 m处释放78 kg的落锤。非混合结构(铝和玻璃钢试样)在耐撞特性方面优于混合结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信