Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

Naeemullah Khan, Byung-Woo Hong, A. Yezzi, G. Sundaramoorthi
{"title":"Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces","authors":"Naeemullah Khan, Byung-Woo Hong, A. Yezzi, G. Sundaramoorthi","doi":"10.1109/CVPR.2017.188","DOIUrl":null,"url":null,"abstract":"We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"60 1","pages":"1733-1742"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.
形状定制连续尺度空间的粗到精分割
我们制定了分割的能量,该能量被设计为优先分割图像的粗结构而不是精细结构,而不平滑跨越区域边界。能量是通过积分从区域内的热方程计算的尺度空间的尺度连续体来表示的。我们表明,能量可以在不计算连续尺度的情况下进行优化,而是从单一尺度开始。这使得该方法与使用一组离散尺度的能量相比计算效率更高。我们将该方法应用于纹理和运动分割。在基准数据集上的实验表明,连续尺度比离散尺度和其他竞争方法具有更好的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信