Assessment of forest thinning intensity using sparse point clouds from repeated airborne lidar measurements

Q4 Agricultural and Biological Sciences
Mait Lang, T. Arumäe
{"title":"Assessment of forest thinning intensity using sparse point clouds from repeated airborne lidar measurements","authors":"Mait Lang, T. Arumäe","doi":"10.2478/fsmu-2018-0004","DOIUrl":null,"url":null,"abstract":"Abstract Thinning cuttings create moderate disturbances in forest stands. Thinning intensity indicates the amount of felled wood relative to the initial standing volume. We used sparse point clouds from airborne lidar measurements carried out in 2008 and 2012 at Aegviidu test site, Estonia, to study stand level relationships of thinning intensity to the changes in canopy cover and ALS-based wood volume estimates. Thinning intensity (Kr, HRV) was estimated from forest inventory data and harvester measurements of removed wood volume. The thinning intensity ranged from 17% to 56%. By raising threshold from 1.3 m to 8.0 m over ground surface we observed less canopy cover change, but stronger correlation with thinning intensity. Correlation between ALS-based and harvester-based thinning intensity was moderate. The ALS-based thinning intensity estimate was systematically smaller than Kr, HRV. Forest height growth compensates for a small decrease in canopy cover and intensity estimates for weak thinnings are not reliable using sparse point clouds and a four-year measurement interval.","PeriodicalId":35353,"journal":{"name":"Forestry Studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fsmu-2018-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Thinning cuttings create moderate disturbances in forest stands. Thinning intensity indicates the amount of felled wood relative to the initial standing volume. We used sparse point clouds from airborne lidar measurements carried out in 2008 and 2012 at Aegviidu test site, Estonia, to study stand level relationships of thinning intensity to the changes in canopy cover and ALS-based wood volume estimates. Thinning intensity (Kr, HRV) was estimated from forest inventory data and harvester measurements of removed wood volume. The thinning intensity ranged from 17% to 56%. By raising threshold from 1.3 m to 8.0 m over ground surface we observed less canopy cover change, but stronger correlation with thinning intensity. Correlation between ALS-based and harvester-based thinning intensity was moderate. The ALS-based thinning intensity estimate was systematically smaller than Kr, HRV. Forest height growth compensates for a small decrease in canopy cover and intensity estimates for weak thinnings are not reliable using sparse point clouds and a four-year measurement interval.
利用机载激光雷达重复测量的稀疏点云评估森林间伐强度
间伐插枝对林分产生适度的干扰。间伐强度表示砍伐木材的数量相对于初始立木体积。利用2008年和2012年在爱沙尼亚Aegviidu试验场进行的机载激光雷达测量的稀疏点云,研究了林分水平间伐强度与冠层覆盖度变化的关系以及基于als的木材体积估计值。间伐强度(Kr, HRV)是根据森林清查数据和采伐机测量的砍伐木材量估算的。间伐强度为17% ~ 56%。当阈值从地表1.3 m提高到8.0 m时,冠层覆盖度变化较小,但与间伐强度的相关性较强。基于als的间伐强度与基于收获机的间伐强度相关性中等。基于als的减薄强度估计值系统地小于Kr、HRV。森林高度的增长补偿了冠层覆盖度的小幅度下降,使用稀疏点云和4年测量间隔对弱疏变的强度估计是不可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forestry Studies
Forestry Studies Agricultural and Biological Sciences-Forestry
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信