Forward untangling and applications to the uniqueness problem for the continuity equation

S. Bianchini, P. Bonicatto
{"title":"Forward untangling and applications to the uniqueness problem for the continuity equation","authors":"S. Bianchini, P. Bonicatto","doi":"10.3934/dcds.2020384","DOIUrl":null,"url":null,"abstract":"We introduce the notion of forward untangled Lagrangian representation of a measuredivergence vector-measure ρ(1, b), where ρ ∈ M+(Rd+1) and b : Rd+1 → Rd is a ρ-integrable vector field with divt,x(ρ(1, b)) = μ ∈ M(R × Rd): forward untangling formalizes the notion of forward uniqueness in the language of Lagrangian representations. We identify local conditions for a Lagrangian representation to be forward untangled, and we show how to derive global forward untangling from such local assumptions. We then show how to reduce the PDE divt,x(ρ(1, b)) = μ on a partition of R+ × Rd obtained concatenating the curves seen by the Lagrangian representation. As an application, we recover known well posedeness results for the flow of monotone vector fields and for the associated continuity equation.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2020384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce the notion of forward untangled Lagrangian representation of a measuredivergence vector-measure ρ(1, b), where ρ ∈ M+(Rd+1) and b : Rd+1 → Rd is a ρ-integrable vector field with divt,x(ρ(1, b)) = μ ∈ M(R × Rd): forward untangling formalizes the notion of forward uniqueness in the language of Lagrangian representations. We identify local conditions for a Lagrangian representation to be forward untangled, and we show how to derive global forward untangling from such local assumptions. We then show how to reduce the PDE divt,x(ρ(1, b)) = μ on a partition of R+ × Rd obtained concatenating the curves seen by the Lagrangian representation. As an application, we recover known well posedeness results for the flow of monotone vector fields and for the associated continuity equation.
前向解结及其在连续性方程唯一性问题中的应用
我们引入了测量收敛向量ρ(1, b)的前向解纠缠拉格朗日表示的概念,其中ρ∈M+(Rd+1)和b: Rd+1→Rd是一个ρ可积的向量场,其中divt,x(ρ(1, b)) = μ∈M(R × Rd):前向解纠缠形式化了拉格朗日表示语言中的前向唯一性概念。我们确定了拉格朗日表示向前解缠的局部条件,并展示了如何从这些局部假设中推导出全局向前解缠。然后,我们展示了如何减少PDE分割,x(ρ(1, b)) = μ上的分割,得到了连接由拉格朗日表示的曲线。作为一个应用,我们恢复了单调向量场的流动和相关的连续性方程的已知的完备性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信