Power series approach to nonlinear oscillators

IF 2.8 4区 工程技术 Q1 ACOUSTICS
Ata Abu- As’ad, Jihad H. Asad
{"title":"Power series approach to nonlinear oscillators","authors":"Ata Abu- As’ad, Jihad H. Asad","doi":"10.1177/14613484231188756","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a nonlinear oscillator equation containing two strong linear terms. An approximate solution was obtained using power series approach. Furthermore, by introducing a parameter to the original equation, we fined the fixed points of the modified nonlinear oscillator equation and study stability analysis of these fixed points. On the other hand, we simulate the solution of the nonlinear oscillator equation and introduced many plots for different initial conditions. Finally, we make some plots concerning the phase portrait for different cases.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231188756","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a nonlinear oscillator equation containing two strong linear terms. An approximate solution was obtained using power series approach. Furthermore, by introducing a parameter to the original equation, we fined the fixed points of the modified nonlinear oscillator equation and study stability analysis of these fixed points. On the other hand, we simulate the solution of the nonlinear oscillator equation and introduced many plots for different initial conditions. Finally, we make some plots concerning the phase portrait for different cases.
非线性振子的幂级数法
本文引入了一个包含两个强线性项的非线性振子方程。用幂级数法得到了近似解。通过在原方程中引入一个参数,确定了修正后的非线性振子方程的不动点,并研究了这些不动点的稳定性分析。另一方面,我们模拟了非线性振子方程的解,并在不同的初始条件下引入了许多图。最后,对不同情况下的相位画像进行了绘制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.30%
发文量
98
审稿时长
15 weeks
期刊介绍: Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信