{"title":"Micropolar nanofluid overlying a porous layer: Thermosolutal convection","authors":"J. Umavathi","doi":"10.1177/23977914221117030","DOIUrl":null,"url":null,"abstract":"An investigation of the stability of an micropolar nanofluid overlying a sparsely packed porous medium and implanted in a parallel conduit is reviewed. Linear and also nonlinear terms are incorporated for the study. A Darcy-Brinkman-Forchheimer drag force model is deployed. To evaluate nanoscale effects the Buongiorno model is employed. The equations for mass, momentum, angular momentum, energy and nanoparticle species conservation with correlated wall conditions are non-dimensionalized. Modified diffusivity ratio and Lewis number stable the system, the micropolar parameters concentration Rayleigh number destable system for stationary convection. Concentration Rayleigh number, micropolar parameters stabilize and Lewis number destabilizes the system for oscillatory convection. Applications of the study include micro/nano-fluidic devices, nano-doped energy systems and packed beds in chemical engineering.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"5 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221117030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
An investigation of the stability of an micropolar nanofluid overlying a sparsely packed porous medium and implanted in a parallel conduit is reviewed. Linear and also nonlinear terms are incorporated for the study. A Darcy-Brinkman-Forchheimer drag force model is deployed. To evaluate nanoscale effects the Buongiorno model is employed. The equations for mass, momentum, angular momentum, energy and nanoparticle species conservation with correlated wall conditions are non-dimensionalized. Modified diffusivity ratio and Lewis number stable the system, the micropolar parameters concentration Rayleigh number destable system for stationary convection. Concentration Rayleigh number, micropolar parameters stabilize and Lewis number destabilizes the system for oscillatory convection. Applications of the study include micro/nano-fluidic devices, nano-doped energy systems and packed beds in chemical engineering.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.