Spectral discretizations of the Darcy's equations with non standard boundary conditions

IF 0.1
B. Jean-Marie
{"title":"Spectral discretizations of the Darcy's equations with non standard boundary conditions","authors":"B. Jean-Marie","doi":"10.18272/aci.v10i1.824","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the approximation of anonstandard Darcy problem, which modelizes the flow in porous media, byspectral methods: the pressure is assigned on a part of the boundary.We propose two variational formulations, as well as three spectraldiscretizations. The second discretization improves the approximation of thedivergence-free condition, but the error estimate on the pressure is notoptimal, while the third one leads to optimal error estimate with adivergence-free discrete solution, which is important for someapplications. Next, their numerical analysis is performed in detailand we present some numerical experiments which confirm the interestof the third discretization.","PeriodicalId":42541,"journal":{"name":"Avances en Ciencias e Ingenieria","volume":"65 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avances en Ciencias e Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18272/aci.v10i1.824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the approximation of anonstandard Darcy problem, which modelizes the flow in porous media, byspectral methods: the pressure is assigned on a part of the boundary.We propose two variational formulations, as well as three spectraldiscretizations. The second discretization improves the approximation of thedivergence-free condition, but the error estimate on the pressure is notoptimal, while the third one leads to optimal error estimate with adivergence-free discrete solution, which is important for someapplications. Next, their numerical analysis is performed in detailand we present some numerical experiments which confirm the interestof the third discretization.
非标准边界条件下达西方程的谱离散化
本文研究了用谱方法逼近非标准达西问题,该问题模拟了多孔介质中的流动,即在部分边界上赋值压力。我们提出了两种变分公式,以及三种光谱离散化。第二次离散化改进了无散度条件的逼近,但对压力的误差估计不是最优的,而第三次离散化在无散度的离散解下得到最优的误差估计,这对某些应用很重要。其次,对它们进行了详细的数值分析,并给出了一些数值实验,证实了第三次离散化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Avances en Ciencias e Ingenieria
Avances en Ciencias e Ingenieria ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
16
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信