R-Symmetries and Curvature Constraints in A-Twisted Heterotic Landau–Ginzburg Models

R. Garavuso
{"title":"R-Symmetries and Curvature Constraints in A-Twisted Heterotic Landau–Ginzburg Models","authors":"R. Garavuso","doi":"10.3390/particles6030047","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss various aspects of a class of A-twisted heterotic Landau–Ginzburg models on a Kähler variety X. We provide a classification of the R-symmetries in these models which allow the A-twist to be implemented, focusing on the case in which the gauge bundle is either a deformation of the tangent bundle of X or a deformation of a sub-bundle of the tangent bundle of X. Some anomaly-free examples are provided. The curvature constraint imposed by supersymmetry in these models when the superpotential is not holomorphic is reviewed. Constraints of this nature have been used to establish properties of analogues of pullbacks of Mathai–Quillen forms which arise in the correlation functions of the corresponding A-twisted or B-twisted heterotic Landau–Ginzburg models. The analogue most relevant to this paper is a deformation of the pullback of a Mathai–Quillen form. We discuss how this deformation may arise in the class of models studied in this paper. We then comment on how analogues of pullbacks of Mathai–Quillen forms not discussed in previous work may be obtained. Standard Mathai–Quillen formalism is reviewed in an appendix. We also include an appendix which discusses the deformation of the pullback of a Mathai–Quillen form.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"116 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhaled particles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/particles6030047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss various aspects of a class of A-twisted heterotic Landau–Ginzburg models on a Kähler variety X. We provide a classification of the R-symmetries in these models which allow the A-twist to be implemented, focusing on the case in which the gauge bundle is either a deformation of the tangent bundle of X or a deformation of a sub-bundle of the tangent bundle of X. Some anomaly-free examples are provided. The curvature constraint imposed by supersymmetry in these models when the superpotential is not holomorphic is reviewed. Constraints of this nature have been used to establish properties of analogues of pullbacks of Mathai–Quillen forms which arise in the correlation functions of the corresponding A-twisted or B-twisted heterotic Landau–Ginzburg models. The analogue most relevant to this paper is a deformation of the pullback of a Mathai–Quillen form. We discuss how this deformation may arise in the class of models studied in this paper. We then comment on how analogues of pullbacks of Mathai–Quillen forms not discussed in previous work may be obtained. Standard Mathai–Quillen formalism is reviewed in an appendix. We also include an appendix which discusses the deformation of the pullback of a Mathai–Quillen form.
A-Twisted异质性Landau-Ginzburg模型中的r -对称性和曲率约束
在本文中,我们讨论了Kähler变量X上的一类a -twisted heterotic Landau-Ginzburg模型的各个方面。我们给出了这些模型中允许实现a -twisted的r - symmetry的分类,重点讨论了规范束是X的切线束的变形或X的切线束的子束的变形的情况。讨论了当超势非全纯时,超对称对这些模型的曲率约束。这种性质的约束已经被用来建立相应的a扭或b扭异质朗多-金兹堡模型的相关函数中出现的mataai - quillen形式回调的类似物的性质。与本文最相关的类比是Mathai-Quillen形式的回拉变形。我们讨论了在本文研究的这类模型中这种变形是如何产生的。然后,我们评论了如何获得以前工作中未讨论的Mathai-Quillen形式回调的类似物。标准的Mathai-Quillen形式主义在附录中进行了回顾。我们还包括一个附录,其中讨论了马塔伊-奎伦形式的回拉变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信