A novel text-style sequential modeling method for ultrasonic rail flaw detection

Xiao Luo, Yunqing Hu, Yue Liu, Hu Mengying, Wei Chu, Jun Lin
{"title":"A novel text-style sequential modeling method for ultrasonic rail flaw detection","authors":"Xiao Luo, Yunqing Hu, Yue Liu, Hu Mengying, Wei Chu, Jun Lin","doi":"10.1109/VPPC49601.2020.9330976","DOIUrl":null,"url":null,"abstract":"Integrity of rails is the foundation of safe rail transportation. It is critical to detect internal rail flaws in time, and one popular solution to this issue is ultrasonic techniques. On the other hand, long short-term memory (LSTM) has been proven in text classification to which we think the ultrasonic rail flaw detection can be quite similar. In this context, this paper proposes a novel text-style sequential modeling method for ultrasonic rail flaw data and a LSTM-based deep learning model for rail flaw detection. Comparative experiments proved the feasibility and remarkable computational efficiency of the proposed modeling method and model.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"28 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Integrity of rails is the foundation of safe rail transportation. It is critical to detect internal rail flaws in time, and one popular solution to this issue is ultrasonic techniques. On the other hand, long short-term memory (LSTM) has been proven in text classification to which we think the ultrasonic rail flaw detection can be quite similar. In this context, this paper proposes a novel text-style sequential modeling method for ultrasonic rail flaw data and a LSTM-based deep learning model for rail flaw detection. Comparative experiments proved the feasibility and remarkable computational efficiency of the proposed modeling method and model.
一种新的文本式序列建模方法用于超声钢轨探伤
轨道完整性是轨道交通安全的基础。及时检测钢轨内部缺陷是至关重要的,超声技术是解决这一问题的一种常用方法。另一方面,长短期记忆(LSTM)在文本分类中的应用也得到了验证,我们认为超声波钢轨探伤与此非常相似。在此背景下,本文提出了一种新的文本风格的超声钢轨缺陷数据序列建模方法和基于lstm的钢轨缺陷检测深度学习模型。对比实验证明了所提出的建模方法和模型的可行性和显著的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信