Forrelation: A Problem that Optimally Separates Quantum from Classical Computing

S. Aaronson, A. Ambainis
{"title":"Forrelation: A Problem that Optimally Separates Quantum from Classical Computing","authors":"S. Aaronson, A. Ambainis","doi":"10.1145/2746539.2746547","DOIUrl":null,"url":null,"abstract":"We achieve essentially the largest possible separation between quantum and classical query complexities. We do so using a property-testing problem called Forrelation, where one needs to decide whether one Boolean function is highly correlated with the Fourier transform of a second function. This problem can be solved using 1 quantum query, yet we show that any randomized algorithm needs Ω(√(N)log(N)) queries (improving an Ω(N1/4) lower bound of Aaronson). Conversely, we show that this 1 versus Ω(√(N)) separation is optimal: indeed, any t-query quantum algorithm whatsoever can be simulated by an O(N1-1/2t)-query randomized algorithm. Thus, resolving an open question of Buhrman et al. from 2002, there is no partial Boolean function whose quantum query complexity is constant and whose randomized query complexity is linear. We conjecture that a natural generalization of Forrelation achieves the optimal t versus Ω(N1-1/2t) separation for all t. As a bonus, we show that this generalization is BQP-complete. This yields what's arguably the simplest BQP-complete problem yet known, and gives a second sense in which Forrelation \"captures the maximum power of quantum computation.\"","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

We achieve essentially the largest possible separation between quantum and classical query complexities. We do so using a property-testing problem called Forrelation, where one needs to decide whether one Boolean function is highly correlated with the Fourier transform of a second function. This problem can be solved using 1 quantum query, yet we show that any randomized algorithm needs Ω(√(N)log(N)) queries (improving an Ω(N1/4) lower bound of Aaronson). Conversely, we show that this 1 versus Ω(√(N)) separation is optimal: indeed, any t-query quantum algorithm whatsoever can be simulated by an O(N1-1/2t)-query randomized algorithm. Thus, resolving an open question of Buhrman et al. from 2002, there is no partial Boolean function whose quantum query complexity is constant and whose randomized query complexity is linear. We conjecture that a natural generalization of Forrelation achieves the optimal t versus Ω(N1-1/2t) separation for all t. As a bonus, we show that this generalization is BQP-complete. This yields what's arguably the simplest BQP-complete problem yet known, and gives a second sense in which Forrelation "captures the maximum power of quantum computation."
关联:量子计算与经典计算的最佳分离问题
我们基本上实现了量子查询和经典查询复杂性之间最大可能的分离。我们使用一个被称为关系的性质测试问题来做到这一点,其中需要确定一个布尔函数是否与另一个函数的傅里叶变换高度相关。这个问题可以使用1个量子查询来解决,但是我们证明任何随机算法都需要Ω(√(N)log(N))个查询(改进Aaronson的Ω(N1/4)下界)。相反,我们表明这种1与Ω(√(N))的分离是最优的:实际上,任何t-查询量子算法都可以通过O(N1-1/2t)-查询随机化算法来模拟。因此,解决了Buhrman等人2002年提出的一个开放性问题,不存在量子查询复杂度为常数且随机查询复杂度为线性的部分布尔函数。我们推测,对于所有t, Forrelation的自然推广实现了与Ω(N1-1/2t)分离的最优t。作为奖励,我们证明了这种推广是bqp完备的。这产生了目前已知的最简单的bqp完备问题,并给出了第二种意义,即Forrelation“抓住了量子计算的最大能力”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信