On the $x$--coordinates of Pell equations that are products of two Lucas numbers

IF 0.4 Q4 MATHEMATICS
Mahadi Ddamulira
{"title":"On the $x$--coordinates of Pell equations that are products of two Lucas numbers","authors":"Mahadi Ddamulira","doi":"10.33774/COE-2020-27J3Q","DOIUrl":null,"url":null,"abstract":"Let $ \\{L_n\\}_{n\\ge 0} $ be the sequence of Lucas numbers given by $ L_0=2, ~ L_1=1 $ and $ L_{n+2}=L_{n+1}+L_n $ for all $ n\\ge 0 $. In this paper, for an integer $d\\geq 2$ which is square-free, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x^{2}-dy^{2}=\\pm 1$ which is a product of two Lucas numbers, with a few exceptions that we completely characterize.","PeriodicalId":47144,"journal":{"name":"FIBONACCI QUARTERLY","volume":"28 1","pages":"18-37"},"PeriodicalIF":0.4000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FIBONACCI QUARTERLY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/COE-2020-27J3Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let $ \{L_n\}_{n\ge 0} $ be the sequence of Lucas numbers given by $ L_0=2, ~ L_1=1 $ and $ L_{n+2}=L_{n+1}+L_n $ for all $ n\ge 0 $. In this paper, for an integer $d\geq 2$ which is square-free, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x^{2}-dy^{2}=\pm 1$ which is a product of two Lucas numbers, with a few exceptions that we completely characterize.
在Pell方程的x坐标上它是两个Lucas数的乘积
设$ \{L_n\}_{n\ge 0} $为所有$ n\ge 0 $由$ L_0=2, ~ L_1=1 $和$ L_{n+2}=L_{n+1}+L_n $给出的卢卡斯数序列。在本文中,对于一个无平方的整数$d\geq 2$,我们证明了Pell方程$x^{2}-dy^{2}=\pm 1$中最多有一个正整数$x$的值,它是两个Lucas数的乘积,除了一些我们完全描述的例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FIBONACCI QUARTERLY
FIBONACCI QUARTERLY MATHEMATICS-
CiteScore
0.80
自引率
50.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信