CRF based method for curb detection using semantic cues and stereo depth

Danish Sodhi, Sarthak Upadhyay, Dhaivat Bhatt, K. Krishna, S. Swarup
{"title":"CRF based method for curb detection using semantic cues and stereo depth","authors":"Danish Sodhi, Sarthak Upadhyay, Dhaivat Bhatt, K. Krishna, S. Swarup","doi":"10.1145/3009977.3010058","DOIUrl":null,"url":null,"abstract":"Curb detection is a critical component of driver assistance and autonomous driving systems. In this paper, we present a discriminative approach to the problem of curb detection under diverse road conditions. We define curbs as the intersection of drivable and non-drivable area which are classified using dense Conditional random fields(CRF). In our method, we fuse output of a neural network used for pixel-wise semantic segmentation with depth and color information from stereo cameras. CRF fuses the output of a deep model and height information available in stereo data and provides improved segmentation. Further we introduce temporal smoothness using a weighted average of Segnet output and output from a probabilistic voxel grid as our unary potential. Finally, we show improvements over the current state of the art neural networks. Our proposed method shows accurate results over large range of variations in curb curvature and appearance, without the need of retraining the model for the specific dataset.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"27 1","pages":"41:1-41:7"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Curb detection is a critical component of driver assistance and autonomous driving systems. In this paper, we present a discriminative approach to the problem of curb detection under diverse road conditions. We define curbs as the intersection of drivable and non-drivable area which are classified using dense Conditional random fields(CRF). In our method, we fuse output of a neural network used for pixel-wise semantic segmentation with depth and color information from stereo cameras. CRF fuses the output of a deep model and height information available in stereo data and provides improved segmentation. Further we introduce temporal smoothness using a weighted average of Segnet output and output from a probabilistic voxel grid as our unary potential. Finally, we show improvements over the current state of the art neural networks. Our proposed method shows accurate results over large range of variations in curb curvature and appearance, without the need of retraining the model for the specific dataset.
基于CRF的基于语义线索和立体深度的路边检测方法
路缘检测是驾驶辅助和自动驾驶系统的关键组成部分。在本文中,我们提出了一种判别方法来解决不同道路条件下的路边检测问题。我们将路缘定义为可行驶区域和不可行驶区域的交集,并使用密集条件随机场(CRF)对其进行分类。在我们的方法中,我们将用于像素语义分割的神经网络输出与来自立体摄像机的深度和颜色信息融合在一起。CRF融合了深度模型的输出和立体数据中的高度信息,并提供了改进的分割。此外,我们使用分段输出和概率体素网格输出的加权平均值作为一元势引入时间平滑性。最后,我们展示了对当前最先进的神经网络的改进。我们提出的方法在路边曲率和外观的大范围变化上显示了准确的结果,而不需要针对特定数据集重新训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信