S. Ramesh, H. Kim, S. Msolli, A. Rengaraj, Y. Huh, Joo-Hyung Kim
{"title":"Rod-Like Structure of Cotton Cellulose/Polyvinyl Alcohol/Tellurium Dioxide (TeO2) Hybrid Nanocomposite and Antimicrobial Properties","authors":"S. Ramesh, H. Kim, S. Msolli, A. Rengaraj, Y. Huh, Joo-Hyung Kim","doi":"10.1080/03602559.2017.1373397","DOIUrl":null,"url":null,"abstract":"ABSTRACT We report on the in situ synthesis through sol-gel processing of a tellurium dioxide (TeO2)–cellulose–polyvinyl alcohol (PVA) hybrid composite. The cellulose–PVA hybrid composite was synthesized through chemical graft in the presence of aqueous sodium hydroxide. Field emission scanning electron microscopy, SEM-EDX, high-resolution transition microscopy (FE-TEM) revealed that polycrystalline nanorods were uniformly distributed with sizes of 20 nm in the cotton cellulose–PVA–TeO2 hybrid nanocomposite. The average size of TeO2 crystallite was calculated to be 0.292 nm, as shown in the FE-TEM, SAED, and X-ray diffraction analysis. Furthermore, the hybrid nanocomposites were studied for their antimicrobial activity against Bacillus cereus and Escherichia coli strains, which was inhibited at a size of 10–12 mm after 24 h of incubation. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"21 1","pages":"1131 - 1138"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1373397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT We report on the in situ synthesis through sol-gel processing of a tellurium dioxide (TeO2)–cellulose–polyvinyl alcohol (PVA) hybrid composite. The cellulose–PVA hybrid composite was synthesized through chemical graft in the presence of aqueous sodium hydroxide. Field emission scanning electron microscopy, SEM-EDX, high-resolution transition microscopy (FE-TEM) revealed that polycrystalline nanorods were uniformly distributed with sizes of 20 nm in the cotton cellulose–PVA–TeO2 hybrid nanocomposite. The average size of TeO2 crystallite was calculated to be 0.292 nm, as shown in the FE-TEM, SAED, and X-ray diffraction analysis. Furthermore, the hybrid nanocomposites were studied for their antimicrobial activity against Bacillus cereus and Escherichia coli strains, which was inhibited at a size of 10–12 mm after 24 h of incubation. GRAPHICAL ABSTRACT