Near real-time animal action recognition and classification

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. D. Egorov, M. S. Reznik
{"title":"Near real-time animal action recognition and classification","authors":"A. D. Egorov, M. S. Reznik","doi":"10.18287/2412-6179-co-1138","DOIUrl":null,"url":null,"abstract":"In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In computer vision, identification of actions of an object is considered as a complex and relevant task. When solving the problem, one requires information on the position of key points of the object. Training models that determine the position of key points requires a large amount of data, including information on the position of these key points. Due to the lack of data for training, the paper provides a method for obtaining additional data for training, as well as an algorithm that allows highly accurate recognition of animal actions based on a small number of data. The achieved accuracy of determining the key points positions within a test sample is 92%. Positions of the key points define the action of the object. Various approaches to classifying actions by key points are compared. The accuracy of identifying the action of the object in the image reaches 72.9 %.
接近实时的动物动作识别和分类
在计算机视觉中,识别物体的动作被认为是一项复杂而相关的任务。在解决这个问题时,人们需要关于物体关键点位置的信息。确定关键点位置的训练模型需要大量的数据,包括这些关键点的位置信息。由于缺乏训练数据,本文提供了一种获取额外训练数据的方法,以及一种基于少量数据对动物动作进行高精度识别的算法。在测试样本内确定关键点位置的准确度为92%。关键点的位置定义了对象的动作。比较了按关键点对动作进行分类的各种方法。识别图像中物体动作的准确率达到72.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信