{"title":"A theoretical analysis of electrochemical arc machining","authors":"J. McGeough, H. Rasmussen","doi":"10.1098/rspa.1990.0067","DOIUrl":null,"url":null,"abstract":"Electrochemical arc machining (ECAM) involves the removal of metal from an anodically polarized workpiece by both erosion arising from discharges produced in an aqueous electrolyte and electrolytic dissolution. A theoretical model is derived for the process and analysed for two specific applications, fine-hole drilling and the finishing of components by smoothing of their initially rough surfaces. In the second of these examples, a perturbation procedure for obtaining approximate solutions is used; the model so developed encorporates the effects of current density on current efficiency which are known from experimental electrochemical machining (ECM) studies to influence the rate and mode of smoothing. For fine-hole drilling by ECAM, the analysis predicts that the interelectrode gap width increases with the applied voltage and inversely with the square root of the mechanically driven anode. In the case of smoothing, ECAM is found to remove the surface irregularities at a much faster rate and with lower loss of stock metal than ECM alone, when electrolytes such as sodium chloride solution yielding 100% current efficiency are used for the latter process. The analysis shows that an electrolyte solution with a current density-dependent current efficiency is needed if parent metal loss by ECM is to approach that of ECAM, and even then, machining by the latter is still much faster. Attention is drawn to experimental evidence in support of these predictions of ECAM behaviour. Finally, results from the model are used to verify the practical use of ECM for rapid finishing of the surfaces of components left rough by electrodischarge machining.","PeriodicalId":20605,"journal":{"name":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.1990.0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Electrochemical arc machining (ECAM) involves the removal of metal from an anodically polarized workpiece by both erosion arising from discharges produced in an aqueous electrolyte and electrolytic dissolution. A theoretical model is derived for the process and analysed for two specific applications, fine-hole drilling and the finishing of components by smoothing of their initially rough surfaces. In the second of these examples, a perturbation procedure for obtaining approximate solutions is used; the model so developed encorporates the effects of current density on current efficiency which are known from experimental electrochemical machining (ECM) studies to influence the rate and mode of smoothing. For fine-hole drilling by ECAM, the analysis predicts that the interelectrode gap width increases with the applied voltage and inversely with the square root of the mechanically driven anode. In the case of smoothing, ECAM is found to remove the surface irregularities at a much faster rate and with lower loss of stock metal than ECM alone, when electrolytes such as sodium chloride solution yielding 100% current efficiency are used for the latter process. The analysis shows that an electrolyte solution with a current density-dependent current efficiency is needed if parent metal loss by ECM is to approach that of ECAM, and even then, machining by the latter is still much faster. Attention is drawn to experimental evidence in support of these predictions of ECAM behaviour. Finally, results from the model are used to verify the practical use of ECM for rapid finishing of the surfaces of components left rough by electrodischarge machining.