DisDSS: a novel Web-based smart disaster management system for determining the nature of a social media message for decision-making using deep learning – case study of COVID-19
{"title":"DisDSS: a novel Web-based smart disaster management system for determining the nature of a social media message for decision-making using deep learning – case study of COVID-19","authors":"A. Singla, R. Agrawal","doi":"10.1108/gkmc-07-2022-0180","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to propose DisDSS: a Web-based smart disaster management (DM) system for decision-making that will assist disaster professionals in determining the nature of disaster-related social media (SM) messages. The research classifies the tweets into need-based, availability-based, situational-based, general and irrelevant categories and visualizes them on a web interface, location-wise.\n\n\nDesign/methodology/approach\nIt is worth mentioning that a fusion-based deep learning (DL) model is introduced to objectively determine the nature of an SM message. The proposed model uses the convolution neural network and bidirectional long short-term memory network layers.\n\n\nFindings\nThe developed system leads to a better performance in accuracy, precision, recall, F-score, area under receiver operating characteristic curve and area under precision-recall curve, compared to other state-of-the-art methods in the literature. The contribution of this paper is three fold. First, it presents a new covid data set of SM messages with the label of nature of the message. Second, it offers a fusion-based DL model to classify SM data. Third, it presents a Web-based interface to visualize the structured information.\n\n\nOriginality/value\nThe architecture of DisDSS is analyzed based on the practical case study, i.e. COVID-19. The proposed DL-based model is embedded into a Web-based interface for decision support. To the best of the authors’ knowledge, this is India’s first SM-based DM system.\n","PeriodicalId":43718,"journal":{"name":"Global Knowledge Memory and Communication","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Knowledge Memory and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/gkmc-07-2022-0180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to propose DisDSS: a Web-based smart disaster management (DM) system for decision-making that will assist disaster professionals in determining the nature of disaster-related social media (SM) messages. The research classifies the tweets into need-based, availability-based, situational-based, general and irrelevant categories and visualizes them on a web interface, location-wise.
Design/methodology/approach
It is worth mentioning that a fusion-based deep learning (DL) model is introduced to objectively determine the nature of an SM message. The proposed model uses the convolution neural network and bidirectional long short-term memory network layers.
Findings
The developed system leads to a better performance in accuracy, precision, recall, F-score, area under receiver operating characteristic curve and area under precision-recall curve, compared to other state-of-the-art methods in the literature. The contribution of this paper is three fold. First, it presents a new covid data set of SM messages with the label of nature of the message. Second, it offers a fusion-based DL model to classify SM data. Third, it presents a Web-based interface to visualize the structured information.
Originality/value
The architecture of DisDSS is analyzed based on the practical case study, i.e. COVID-19. The proposed DL-based model is embedded into a Web-based interface for decision support. To the best of the authors’ knowledge, this is India’s first SM-based DM system.