Enhancing a robot gripper with haptic perception for risk mitigation in physical human robot interaction

Christoph Hellmann, A. Bajrami, W. Kraus
{"title":"Enhancing a robot gripper with haptic perception for risk mitigation in physical human robot interaction","authors":"Christoph Hellmann, A. Bajrami, W. Kraus","doi":"10.1109/WHC.2019.8816109","DOIUrl":null,"url":null,"abstract":"Utilising a two finger robot gripper in physical human robot interaction bears the risk of clamping fingers in the gripper. In this paper, we formulate a new grasp strategy which aborts grasps if a human body part is grasped instead of a workpiece. The strategy integrates a pressure-based haptic exploratory procedure seamlessly into the grasp process. It uses force and deformation data gathered in the exploratory procedure to distinguish human body parts from workpieces. We compare a support vector machine (SVM) and a random forest classifier for this task. The validation of the grasp strategy is carried out by grasping experiments with a two finger gripper in which a dummy hand and real human hands are used. Using this strategy grasps can be aborted without exceeding the maximum permissible grasp force for collisions with humans. The SVM classifier achieves an accuracy of 99.06% and a recall of 99.997% on our experimental data. Classification only takes 3.65 ms on embedded hardware. The SVM outperforms the random forest classifier.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"14 1","pages":"253-258"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Utilising a two finger robot gripper in physical human robot interaction bears the risk of clamping fingers in the gripper. In this paper, we formulate a new grasp strategy which aborts grasps if a human body part is grasped instead of a workpiece. The strategy integrates a pressure-based haptic exploratory procedure seamlessly into the grasp process. It uses force and deformation data gathered in the exploratory procedure to distinguish human body parts from workpieces. We compare a support vector machine (SVM) and a random forest classifier for this task. The validation of the grasp strategy is carried out by grasping experiments with a two finger gripper in which a dummy hand and real human hands are used. Using this strategy grasps can be aborted without exceeding the maximum permissible grasp force for collisions with humans. The SVM classifier achieves an accuracy of 99.06% and a recall of 99.997% on our experimental data. Classification only takes 3.65 ms on embedded hardware. The SVM outperforms the random forest classifier.
基于触觉感知的机器人抓手在人-机器人物理交互中的风险降低
在物理人机交互中使用双指机器人夹持器存在夹持器夹住手指的风险。在本文中,我们制定了一种新的抓取策略,即当抓取的是人体部位而不是工件时,则会中止抓取。该策略将基于压力的触觉探索程序无缝地集成到抓取过程中。它使用在探查过程中收集的力和变形数据来区分人体部位和工件。我们比较了支持向量机(SVM)和随机森林分类器。通过假手和真人双手的双指抓取实验,对抓取策略进行了验证。使用这种策略,抓取可以在不超过与人碰撞时允许的最大抓取力的情况下中止。SVM分类器在实验数据上的准确率为99.06%,召回率为99.997%。在嵌入式硬件上,分类只需要3.65 ms。支持向量机优于随机森林分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信