Influence of fuel to oxidizer ratio on gas sensing characteristics of ZnFe2O4 nanoparticles

R. Godbole, V. Godbole, P. Rao, P. Alegaokar, S. Bhagwat
{"title":"Influence of fuel to oxidizer ratio on gas sensing characteristics of ZnFe2O4 nanoparticles","authors":"R. Godbole, V. Godbole, P. Rao, P. Alegaokar, S. Bhagwat","doi":"10.1109/ISPTS.2015.7220101","DOIUrl":null,"url":null,"abstract":"Highly porous zinc ferrite (ZnFe2O4) nano-size powders are synthesized by varying fuel to oxidizer ratio. The metal nitrates are used as oxidizers while glycine is used as a fuel. The synthesis of material is carried out using an auto-combustion method. It is observed that the enhancement of magnetization occur with the enhancement of `Fuel to Oxidizer' ratio i.e. Glycine to metal Nitrate (G/N) ratio. The structural, morphological, and magnetic features of samples are studied using XRD, SEM, EDAX, BET and VSM techniques. At the microscopic level, the materials exhibit a formation of spongelike structure containing nano-size particles. The XRD measurements confirm the formation of single phase spinel structure of zinc ferrite (ZnFe2O4). As a case study, the response of materials to ethanol gas is studied. It is observed that higher G/N ratio lead to lowering of gas sensitivity as well as operating temperature. The results are discussed in terms of reactions of surface oxygen with ethanol gas.","PeriodicalId":6520,"journal":{"name":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","volume":"59 1","pages":"147-153"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2015.7220101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Highly porous zinc ferrite (ZnFe2O4) nano-size powders are synthesized by varying fuel to oxidizer ratio. The metal nitrates are used as oxidizers while glycine is used as a fuel. The synthesis of material is carried out using an auto-combustion method. It is observed that the enhancement of magnetization occur with the enhancement of `Fuel to Oxidizer' ratio i.e. Glycine to metal Nitrate (G/N) ratio. The structural, morphological, and magnetic features of samples are studied using XRD, SEM, EDAX, BET and VSM techniques. At the microscopic level, the materials exhibit a formation of spongelike structure containing nano-size particles. The XRD measurements confirm the formation of single phase spinel structure of zinc ferrite (ZnFe2O4). As a case study, the response of materials to ethanol gas is studied. It is observed that higher G/N ratio lead to lowering of gas sensitivity as well as operating temperature. The results are discussed in terms of reactions of surface oxygen with ethanol gas.
燃料与氧化剂比对ZnFe2O4纳米颗粒气敏特性的影响
采用不同燃料与氧化剂比的方法合成了多孔铁酸锌(ZnFe2O4)纳米粉体。金属硝酸盐用作氧化剂,而甘氨酸用作燃料。材料的合成采用自燃烧法进行。观察到磁化强度随“燃料与氧化剂”比率即甘氨酸与金属硝酸盐(G/N)比率的提高而增强。采用XRD、SEM、EDAX、BET和VSM等技术研究了样品的结构、形貌和磁性特征。在微观水平上,材料表现出含有纳米级颗粒的海绵状结构的形成。XRD测定证实了锌铁氧体(ZnFe2O4)形成了单相尖晶石结构。以乙醇气体为例,研究了材料对乙醇气体的响应。结果表明,G/N比值越高,气敏性越低,工作温度越低。从表面氧与乙醇气体反应的角度对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信